
REFERENCE MANUAL
FOR THE MINIX 1.5

DEMONSTRATION DISK

ANDREW S. TANENBAUM

Prentice Hall, Inc

2

�
Copyright 1991 Prentice Hall, Inc.

1

1

INTRODUCTION
Every computer needs an operating system to manage its memory, control its

I/O devices, implement its file system and provide an interface to its users. Many
operating systems exist, such as MS-DOS, OS/2, and UNIX. This manual provides a
very brief introduction to another operating system, MINIX. It is intended to accom-
pany the MINIX demonstration diskette.

Although MINIX was inspired by the well-known AT&T UNIX operating system,
its design and implementation are completely new. It does not contain even a single
line of AT&T code: not in the operating system, not in the C compiler, and not in
any of the nearly 200 utility programs supplied with MINIX. For this reason, it is
possible to include not only all the binary programs, but, virtually all the source
code of the operating system and utilities as well. In this way, people can study
MINIX in detail to learn how a modern operating system is constructed, and can also
modify it to suit their own tastes if need be.

Before getting started, we would like to point out that this manual and the
accompanying demonstration diskette only deal with a tiny fraction of MINIX, just
to give the flavor of the system. If your favorite feature (e.g., the Berkeley vi edi-
tor) is not present here, that does not mean that it is also absent from the full sys-
tem. The standard MINIX distribution for the IBM PC, for example, is 17 diskettes,
whereas the demonstration program is only 1 diskette. Similarly, the manual that
comes with MINIX is 680 pages, including a cross-referenced listing of the operating
system source code itself, in C.

2 INTRODUCTION CHAP. 1

Some of the differences between the demonstration system and full MINIX are
given in the table below.
�� �
Item Demonstration disk Full MINIX�� �
Complete operating system provided? Yes Yes�� �
Complete shell provided? Yes Yes�� �
Printer supported? Yes Yes�� �
RAM disk supported? Yes Yes�� �
Floppy disk supported? Yes Yes�� �
Hard disk supported? Yes Yes�� �
RS-232 serial lines supported? Yes Yes�� �
Real mode supported? Yes Yes�� �
Protected mode supported? No Yes�� �
Ethernet supported? No Yes�� �
Version 7 system calls supported? Yes Yes�� �
Operating system source provided? No Yes�� �
Utility program source provided? No Yes�� �
Multiprogramming supported? Yes Yes�� �
C compiler provided? No Yes�� �
Mountable file systems supported? Yes Yes�� �
Remote login supported? No Yes�� �
Network file transfer supported? No Yes�� �
Number of Editors provided: 1 5�� �
Communication software provided: No Kermit, zmodem�� �
Maximum number of simultaneous users: 1 3�� �
Approximate number of utilities: 25 190�� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

In addition to the IBM version (8088, 8086, 80286, 80386), MINIX is also available
for the Atari, Amiga, and Macintosh. A version for the SPARC is in the works and
will be available in 1991.

1.1. BOOTING MINIX

The steps below will tell you how to boot MINIX on your computer. One word
of warning, however, concerning running MINIX on IBM clones. Although it will
work perfectly with all clones that are compatible with the IBM hardware, there are
a small number of clones that deviate from the IBM hardware and mask these
differences in the BIOS. Since MINIX does not generally use the BIOS, it may not

SEC. 1.1 BOOTING MINIX 3

run on these machines. If the demonstration disk works on your system, it is very
likely that full MINIX will work too, and vice versa.

The problem you are most likely to encounter with the demonstration diskette is
nonstandard video cards. If the screen goes blank every 25 lines (which will hap-
pen with some EGA cards that are not IBM compatible), hit the F3 key once to
enable software scrolling.

Since there are no clones for the Atari, Amiga, and Macintosh, these problems
do not arise there, although occasional problems do arise with peripherals, such as
hard disks, that are not compatible with the vendor’s.

This said, we can now boot MINIX in the following steps.

1. Turn off your computer.

2. Insert the demonstration disk in drive 0 (also called drive A).

3. Turn the computer on.

4. Wait for the menu, then hit the = key (i.e., equal sign) [IBM only].

5. When it asks for the date, please enter a 12-digit number in the form
MMDDYYhhmmss, followed by a carriage return. For example, 3:35
p.m. on July 4, 1976 was 070476153500.

6. When the login: prompt appears, type:

root

Please note that in this manual, lines printed in the Helvetica typeface, as
above, are lines that either you are to type in (literally) or lines that the
computer will display. It will always be clear from the context which
is which. Always type a carriage return (ENTER key) after each line.

7. The computer (actually the shell) will now display:

#

to show that it is ready to accept a command.

8. To see what programs are available, type:

ls –l /bin

A list of file names of executable programs will be displayed. To keep
the list from scrolling out of view, type CTRL-S to stop the scroll and
CTRL-Q to restart it. (CTRL-S means depress the CTRL key, and
while holding it down, depress the S key.) You can also use:

ls –C /bin

to get a short listing.

4 INTRODUCTION CHAP. 1

9. At this point you can run programs, make tests and so on. Some exam-
ples are given below. If you are familar with UNIX you can try the vari-
ous programs in /bin as most will be familiar.

10. When you are done using MINIX, type CTRL-D to log out. login:
prompt will appear, and you can now turn off the computer or boot a
different operating system.

1.2. MAKING AND MOUNTING FILE SYSTEMS

As distributed, the demonstration disk is so full that there is not much room for
user files. Thus it is necessary to make a file system on disk and copy some files
there. You may use either a diskette or a hard disk.

The first step is to decide how large a file system you want to make. The size of
the file system is in units of 1K blocks. Thus a 360K 5.25-inch diskette will hold
360 blocks, a 1.2M 5.25-inch diskette will hold 1200 blocks, a 720K 3.5-inch
diskette will hold 720 blocks, and a 1.44M 3.5-inch diskette will hold 1440 blocks.
If you wish to use a hard disk, pick an unused partition and determine its size in
512-byte sectors using your present operating system’s software (e.g., fdisk). Then
divide the number of sectors by 2 to get the number of blocks, rounding downward
to an integer if there are an odd number of sectors. Finally, subtract 1 from this
number if and only if you are using partition 1, to account for the boot block. The
number of blocks should be between 360 and 32767.

If you are using a diskette, insert it into drive 0 (drive A). To make a file sys-
tem, please use the mkfs command. Below are several examples. Do not type the
sharp sign or the text following it, as this is simply commentary.

mkfs /dev/fd0 360 # For a 360K 5.25-inch diskette
mkfs /dev/at0 1200 # For a 1.2M 5.25-inch diskette
mkfs /dev/ps0 720 # For a 720K 3.5-inch diskette
mkfs /dev/PS0 1440 # For a 1.44M 3.5-inch diskette
mkfs /dev/hd1 6800 # For a 6800-block hard disk partition 1
mkfs /dev/hd2 13600 # For a 13600-block hard disk partition 2
mkfs /dev/hd3 12041 # For a 12041-block hard disk partition 3

You can also use drive 1 (drive B) by replacing the 0 at the end of the device name
by a 1 (e.g., /dev/fd1).

Having made an empty MINIX file system, you can now mount it, make direc-
tories on it, and copy files to it, and remove files from the RAM disk. To perform
this work, type the following commands (again, without typing the comments):

SEC. 1.2 MAKING AND MOUNTING FILE SYSTEMS 5

/etc/mount /dev/fd0 /usr # Mount the new file system
mkdir /usr/bin # Create a directory for binaries
cp /bin/* /usr/bin # Copy all the binaries
rm /bin/* # Free up space on the RAM disk
cp /usr/bin/mined /usr/bin/sh /bin # Restore 2 programs
df # See how much space you have

You can now begin using MINIX. However, if you stop using it and wish to reboot
it later, you need not go through this entire procedure again. After rebooting, mount
the diskette or partition and remove the files from /bin that you do not need using
rm. It is best to restore at least mined and sh to /bin, however, for speed.

1.3. USING THE MINED EDITOR

MINIX comes with five editors as follows:

1. Mined - A simple full screen editor

2. Elle - An editor based on EMACS

3. Vi - A clone of the famous Berkeley vi editor

4. Ex - A clone of the famous Berkeley ex editor

5. Ed - A simple line-oriented editor

The demonstration disk comes only with mined for two reasons. First, mined is
very easy to learn. In 15 minutes you will be an expert. Second, it is quite small;
editors like vi and elle would take up too much space on the demonstration disk.

In this section we will give an introduction to mined. See the manual page in
Chap. 2 for more details. Since the keyboard layouts for each of the machines
differs somewhat, we will describe the IBM keystrokes here, but the 68000 version
will be given in parentheses. To start mined with a sample file type:

cp /etc/text mytext
mined mytext

The first line copies the file /etc/text to mytext so we can modify it without affecting
the original. The second line starts the editor. Within a second your screen will
contain 24 lines of a well-known poem by Lewis Carroll, the author of Alice in
Wonderland. The cursor will be positioned at the upper left-hand corner of the
screen, The bottom line will tell you the name of the file, its length in lines, and its
length in characters, displayed in reverse video. The bottom line will vanish as
soon as the first key is struck, but can be recalled by hitting the middle key in the
numeric keypad (i.e., the key above the ‘‘2’’ and below the ‘‘8’’ (F5 on 68000).

6 INTRODUCTION CHAP. 1

You can move the cursor around the screen using the arrow keys on the numeric
keypad. The HOME key (on the 68000, also HOME) puts it back at the top of the
file. The END key (on the 68000, F6) moves it to the end of the file. The PGDN
key (on the 68000, F3) scrolls the screen down by 24 lines. The PGUP key (on the
68000, F4) scrolls it up by 24 lines. Using these keys you can position the cursor
anywhere in the file. Try them now.

You can enter new text by just typing it. The new text will appear under the
cursor, and the cursor will be advanced one position. There is no automatic wra-
paround, so you must terminate each line using a carriage return (ENTER key).
Although mined can handle lines greater than 80 characters, to keep things simple,
restrict your input lines to less than 80 characters for the moment.

If you make a typing error, use the BACKSPACE key to erase the character to
the left of the cursor. By moving the cursor around the screen using the arrows, you
can erase any character by just positioning the cursor to the right of the character to
be erased. The DEL key erases the character under the cursor.

With only the information given so far, you can produce any document you
need. However, other commands exist to speed up editing. For example, you can
move the cursor to the start or end of the current line by typing CTRL-A or CTRL-
Z, respectively. You can go forward or backward one word using CTRL-F or
CTRL-B, respectively. You can scroll the screen down or up one line using
CTRL-D or CTRL-U, respectively. Try these.

In addition to the BACKSPACE and DEL keys, other methods are provided for
erasing text. CTRL-N deletes the next word (i.e., the one to the right of the cursor).
CTRL-P deletes the previous word. CTRL-T deletes the tail of the current line (i.e.,
all text from the cursor to the end of the line). To delete a block of text, first posi-
tion the cursor at the start of the block and type CTRL-@ to mark the start. Then
move the cursor one character after the end of the block and type CTRL-K to kill it.
The text will vanish from the screen, but be saved in a hidden buffer. You can now
move the cursor anywhere you want and type CTRL-Y to yank the contents of the
hidden buffer out and insert it at the cursor. Yanking does not change the hidden
buffer, so you can insert the same text in multiple places. Try these commands to
see how they work.

You can search forward for a given piece of text by hitting the large plus sign
(+) on the numeric keypad (on the 68000, F1). You will be prompted for a string.
After entering the string, type a carriage return. The numeric minus sign (−)
searches backwards (on the 68000, F2). If you are familiar with the magic charac-
ters allowed by the standard ed editor in searches, you can use those here too.

Although there are some more commands, with just these you can work quite
efficiently. Practice a little bit now. When you have finished editing your file, type
CTRL-W to write the file back to the (RAM) disk. Then exit using CTRL-X. If
you type CTRL-X without first giving CTRL-W, you will be asked if you want to
save it. Answer with ‘‘y’’ for yes and ‘‘n’’ for no. After exiting the editor, you will
be back in the shell, indicated by the sharp sign.

SEC. 1.3 USING THE MINED EDITOR 7

You can create a new file, say foobar, by typing:

mined foobar

After entering the text and typing CTRL-W and CTRL-X, the file will be present on
the disk. Please note that only a small amount of free RAM disk space is available
initially, which limits the number and size of the files you can create. You can
remove programs that you do not need with rm. This will give you more space.

1.4. USING THE SHELL

The MINIX shell is functionally equivalent to the standard Version 7 (Bourne)
shell. In this section we will give some examples of how it is used. For more infor-
mation, consult one of the many books on UNIX. MINIX supports a hierarchical
directory system. Every directory has an absolute path name, starting at the root
directory /. To change to the root directory, type:

cd /

You can find out what files and directories are located here by typing:

ls –l

You can create a new directory mydir by typing:

mkdir mydir

You can now change to that directory to make it your working directory with:

cd mydir

Try doing this, and then use mined to create a small file called file1 here. You can
examine the contents of this directory by typing:

ls –l

Now create a new directory inside mydir by typing:

mkdir newdir

Change to newdir using cd and create a file file2 there. You can find out where you
are by typing:

pwd

Now change back to the root directory and examine your handiwork by typing:

cd /
ls –l mydir
ls –l mydir/newdir

8 INTRODUCTION CHAP. 1

Note the use of the slash character to indicate subdirectories. This choice conforms
to UNIX usage, but is different than MS-DOS, which uses a backslash.

To see how much space you have left, type:

df

To get rid of all the files and directories you have just created, type:

rm –rf /mydir

Now try df again to see how much space you have recovered.
Some of the MINIX programs provided on the demonstration disk are filters.

That is, they read an input file, called standard input, process it in some way, and
write the results on standard output. To see an example of this, type:

head –15 /etc/text

which will extract the first 15 lines of /etc/text and write them on standard output,
which, by default, is the screen. To redirect the output to a file, x, type:

head –15 /etc/text >x

You can examine x using mined or by copying it to the screen using:

cp x /dev/tty

In a similar way, try:

tail –5 /etc/text

to see the last 5 lines of /etc/text.
MINIX allows filters to be combined in a simple way. If you type:

head –15 /etc/text | tail –5

head will extract the first 15 lines of the file and pass them to tail. In other words,
the input to tail will be the output from head. Thus tail will get lines 1 through 15
as its input, and extract the last 5 lines as its output. This will result in lines 11
through 15 of the original file appearing on the screen. When two (or more) pro-
grams are connected this way, the construction is called a pipeline.

A still more complicated example is:

head –15 /etc/text | tail –5 | sort >y

which first extracts 15 lines from the file, then takes the last 5 of these and passes
them to sort, which sorts them alphabetically (using the ASCII collating sequence),
and writes the result on the file x. Try this command, and make up your own pipe-
lines using these programs and also rev, which reverses the characters in a line.
The first character becomes the last one and the last one becomes the first one (e.g.,
HORSE becomes ESROH).

You can compare two files to see if they are identical using cmp. Another

SEC. 1.4 USING THE SHELL 9

useful program is comm, which expects two input files, each containing a sorted list
of items. The output of comm tells which items occur in only the first file (left-hand
column), occur in only the second file (middle column), or in both files (right-hand
column). The output of comm can be displayed, used as the input of another filter,
or redirected to an output file.

It is possible to see the output and save it at the same time using tee as follows:

head /etc/text | sort | tee x

This pipeline writes the sorted output onto the file x, but also writes it on standard
output (the screen).

You can time a command using time:

time sleep 5

The sleep command simply waits 5 seconds before returning, and time reports on
the real time, user time, and system time used to carry out the command. For sleep,
the user and system times will usually be 0.0.

MINIX supports multiprogramming (sometimes called multitasking). Mul-
tiprogramming allows multiple processes to run simultaneously. A process can be
put in the background by appending its command with an ampersand (&) like this:

sleep 15 &

Notice that after typing a command, the shell will respond with a number, the pro-
cess id of the background process just started. If you change your mind, you can
terminate a background process using the kill command. For example, if the previ-
ous command caused the shell to output ‘‘28’’ as the process id, the command

kill 28

would terminate process 28. Process id 0 can be used to kill all background
processes.

You can see how many background processes you have by hitting the F1 key on
the PC or CTRL-ALT-F1 on the Atari. As an example of multiple processes, try
typing:

time sleep 60 & time sleep 50 & time sleep 40 &

This command will start up six background processes: three running time and three
running sleep. Try killing them off one at a time using kill and hit F1 on the IBM
PC (or CTRL-ALT-F1 on the Atari) each time to see how many are left. Needless
to say, you can start any process off in the background, not just sleep.

While a complete tutorial on shell programming is beyond the scope of this
manual, we will just point out that the shell supplied with the demonstration disk is
a full Bourne shell. Consult any book on UNIX to find out more about using it. As a
simple example, create the following file, compare using mined:

10 INTRODUCTION CHAP. 1

case $# in
0) echo Compare: You have not supplied any arguments. At least 2 needed.

exit 1
;;

1) echo Compare: You have only supplied one argument. At least 2 needed.
exit 1
;;

esac

file=$1
shift
for i
do

if cmp –s $i $file 2>/dev/null
then echo $i is the same as $file
else echo $i does not exist or is different from $file

fi
done

To test this shell script, create a file x along with several other files. Some of these
should be copies of x; the rest should be different. For example, type:

cp /etc/rc x
cp /etc/text a
cp x b
cp /etc/passwd c

To run your new shell script, type:

sh compare x a b c

The shell script will compare the second, third, fourth (and subsequent, if present)
files with the first one, and tell which are the same and which are different. Also try
it with no arguments and with one argument. In full MINIX, you could make com-
pare executable with chmod. See Chap. 2 for more programs and try them all.

1.5. PRINTING

You can print files using lpr. For example:

lpr /etc/text &

will print /etc/text using the centronics printer port. Note that lpr is not a spooler, so
you cannot start up the next lpr until the first one is finished, but by starting it up in
the background, as shown, you can do other things while it is printing.

SEC. 1.5 PRINTING 11

2

MANUAL PAGES
This chapter contains the manual ‘‘pages’’ for those MINIX programs included

on the demonstration disk. For each command, its name, syntax, and flags are
given, as well as at least one example of its usage, and finally a description of what
it does. Although most commands are available in all versions of MINIX A few are
not. These commands have square brackets in their Command lines listing the ver-
sions in which they are present.

The following conventions are used in the Syntax lines below. Items printed in
bold typeface are to be typed exactly as they appear here. Items printed in italics
typeface are to be replaced by user-chosen directory names, file names, integers,
and so on. Punctuation marks are printed in the roman typeface. The sharp sign (#)
is used below to indicate the start of a comment. The text following the sharp sign
is not part of the command. It is provided to help explain the command.

2.1. MANUAL PAGES

Command: cmp – compare two files
Syntax: cmp [–ls] file1 file2
Flags: –l Loud mode. Print bytes that differ (in octal)

–s Silent mode. Print nothing, just return exit status

12 MANUAL PAGES CHAP. 2

Examples: cmp file1 file2 # Tell whether the files are the same
cmp –l file1 file2 # Print all corresponding bytes that differ

Two files are compared. If they are identical, exit status 0 is returned. If they
differ, exit status 1 is returned. If the files cannot be opened, exit status 2 is
returned. If file1 is – , stdin is compared to file2.

Command: comm – print lines common to two sorted files
Syntax: comm [–123] file1 file2
Flags: –1 Suppress column 1 (lines present only in file1)

–2 Suppress column 2 (lines present only in file2)
–3 Suppress column 3 (lines present in both files)

Examples: comm file1 file2 # Print all three columns
comm –12 file1 file2 # Print only lines common to both files

Two sorted files are read and compared. A three column listing is produced.
Files only in file1 are in column 1; files only in file2 are in column 2; files common
to both files are in column 3. The file name – means stdin.

Command: cp – copy file
Syntax: cp file1 file2

cp file ... directory
Flags: (none)
Examples: cp oldfile newfile # Copy oldfile to newfile

cp file1 file2 /usr/ast # Copy two files to a directory
Cp copies one file to another, or copies one or more files to a directory. A file

cannot be copied to itself. Cp is much faster than cat or dd and should be used for
copying when it is applicable.

Command: date – print or set the date and time
Syntax: date [–q [[MMDDYY]hhmm[ss]]
Flags: –q Read the date from stdin
Examples: date # Print the date and time

date 0221921610 # Set date to Feb 21, 1992 at 4:10 p.m.
Without an argument, date prints the current date and time. With an argument,

it sets the date and time. MMDDYY refers to the month, day, and year; hhmmss
refers to the hour, minute and second. Each of the six fields must be exactly two
digits, no more and no less.

SEC. 2.1 MANUAL PAGES 13

Command: df – report on free disk space and i-nodes
Syntax: df special ...
Flags: (none)
Examples: df /dev/ram # Report on free RAM disk space

df /dev/fd0 /dev/fd1 # Report on diskette space
df # Report on all mounted devices

The amount of disk space and number of i-nodes, both free and used is reported.
If no argument is given, df reports on the root device and all mounted file systems.

Command: echo – print the arguments
Syntax: echo [–n] argument ...
Flags: –n No line feed is output when done
Examples: echo Start Phase 1 # ‘‘Start Phase 1’’ is printed

echo –n Hello # ‘‘Hello’’ is printed without a line feed
Echo writes its arguments to standard output. They are separated by blanks and

terminated with a line feed unless –n is present. This command is used mostly in
shell scripts.

Command: head – print the first few lines of a file
Syntax: head [–n] [file] ...
Flags: –n How many lines to print
Examples: head –6 # Print first 6 lines of stdin

head –1 file1 file2 # Print first line of two files
The first few lines of one or more files are printed. The default count is 10 lines.

The default file is stdin.

Command: kill – send a signal to a process
Syntax: kill [–n] process
Flags: –n Signal number to send
Examples: kill 35 # Send signal 15 to process 35

kill –9 40 # Send signal 9 to process 40
kill –2 0 # Send signal 2 to whole process group

A signal is sent to a given process. By default signal 15 (SIGTERM) is sent.
Process 0 means all the processes in the sender’s process group.

14 MANUAL PAGES CHAP. 2

Command: login – log into the computer
Syntax: login [user]
Flags: (none)
Example: login ast # Login as ast

Login allows a logged in user to login as someone else without first logging out.
If a password is needed, login will prompt for it.

Command: lpr – copy a file to the line printer
Syntax: lpr [file] ...
Flags: (none)
Examples: lpr file & # Print file on the line printer

pr file | lpr & # Print stdin (pr’s output)
Each argument is interpreted as a file to be printed. Lpr copies each file to

/dev/lp, without spooling. It inserts carriage returns and expands tabs. Only one lpr
at a time may be running.

Command: ls – list the contents of a directory
Syntax: ls [–ACFRadfgilrstu] [name] ...
Flags: –A All entries are listed, except . and ..

–C Multicolumn listing
–F Put / after directory names
–R Recursively list subdirectories
–a All entries are listed, even . and ..
–d Do not list contents of directories
–f List argument as unsorted directory
–g Group id given instead of user id
–i I-node number printed in first column
–l Long listing: mode, links, owner, size and time
–r Reverse the sort order
–s Give size in blocks (including indirect blocks)
–t Sort by time, latest first
–u Use last usage time instead of modification time

Examples: ls –l # List files in working directory
ls –lis # List with i-nodes and sizes

For each file argument, list it. For each directory argument, list its contents,
unless –d is present. When no argument is present, the working directory is listed.

SEC. 2.1 MANUAL PAGES 15

Command: mined – MINIX editor
Syntax: mined [file]
Flags: (none)
Examples: mined /user/ast/book.3 # Edit an existing file

mined # Call editor to create a new file
ls –l | mined # Use mined as a pager to inspect listing

Mined (pronounced min-ed) is a simple full-screen editor. When editing a file,
it holds the file in memory, thus speeding up editing, but limiting the editor to files
of up to about 35K. Larger files must first be cut into pieces by split. Lines may be
arbitrarily long. Output from a command may be piped into mined so it can be
viewed without scrolling off the screen, that is, mined can be used as a pager.

At any instant, a window of 24 lines is visible on the screen. The current posi-
tion in the file is shown by the cursor. Ordinary characters typed in are inserted at
the cursor. Control characters and keys on the numeric keypad (at the right-hand
side of the keyboard) are used to move the cursor and perform other functions.

Commands exist to move forward and backward a word, and delete words either
in front of the cursor or behind it. A word in this context is a sequence of charac-
ters delimited on both ends by white space (space, tab, line feed, start of file, or end
of file). The commands for deleting characters and words also work on line feeds,
making it possible to join two consecutive lines by deleting the line feed between
them.

The editor maintains one save buffer (not displayed). Commands are present to
move text from the file to the buffer, from the buffer to the file, and to write the
buffer onto a new file. If the edited text cannot be written out due to a full disk, it
may still be possible to copy the whole text to the save buffer and then write it to a
different file on a different disk with CTRL-Q. It may also be possible to escape
from the editor with CTRL-S and remove some files.

Some of the commands prompt for arguments (file names, search patterns, etc.).
All commands that might result in loss of the file being edited prompt to ask for
confirmation.

A key (command or ordinary character) can be repeated n times by typing ESC
n key where ESC is the ‘‘escape’’ key.

Forward and backward searching requires a regular expression as the search
pattern. Regular expressions follow the same rules as in the UNIX editor, ed. These
rules can be stated as:

1. Any displayable character matches itself.

2. . (period) matches any character except line feed.

3. ˆ (circumflex) matches the start of the line.

4. $ (dollar sign) matches the end of the line.

5. \c matches the character c (including period, circumflex, etc).

16 MANUAL PAGES CHAP. 2

6. [string] matches any of the characters in the string.

7. [ˆstring] matches any of the characters except those in the string.

8. [x–y] matches any characters between x and y (e.g., [a–z]).

9. Pattern∗ matches any number of occurrences of pattern.

Some examples of regular expressions are:

The boy matches the string ‘‘The boy’’
ˆ$ matches any empty line.
ˆ.$ matches any line containing exactly 1 character
ˆA.*\.$ matches any line starting with an A, ending with a period.
ˆ[A–Z]*$ matches any line containing only capital letters (or empty).
[A–Z0–9] matches any line containing either a capital letter or a digit.
.*X matches any line ending in ‘‘X’’
A.*B matches any line containing an ‘‘A’’ and then a ‘‘B’’

Control characters cannot be entered into a file simply by typing them because
all of them are editor commands. To enter a control character, depress the ALT
key, and then while holding it down, hit the ESC key. Release both ALT and ESC
and type the control character. Control characters are displayed in reverse video.

The mined commands are as follows.

CURSOR MOTION
arrows Move the cursor in the indicated direction
CTRL-A Move cursor to start of current line
CTRL-Z Move cursor to end of current line
CTRL-ˆ Move cursor to top of screen
CTRL- � Move cursor to end of screen
CTRL-F Move cursor forward to start of next word
CTRL-B Move cursor backward to start of previous word

SCREEN MOTION
Home key Move to first character of the file
End key Move to last character of the file
PgUp key Scroll window up 23 lines (closer to start of the file)
PgDn key Scroll window down 23 lines (closer to end of the file)
CTRL-U Scroll window up 1 line
CTRL-D Scroll window down 1 line

MODIFYING TEXT
Del key Delete the character under the cursor
Backspace Delete the character to left of the cursor

SEC. 2.1 MANUAL PAGES 17

CTRL-N Delete the next word
CTRL-P Delete the previous word
CTRL-T Delete tail of line (all characters from cursor to end of line)
CTRL-O Open up the line (insert line feed and back up)
CTRL-G Get and insert a file at the cursor position

BUFFER OPERATIONS
CTRL-@ Set mark at current position for use with CTRL-C and CTRL-K
CTRL-C Copy the text between the mark and the cursor into the buffer
CTRL-K Delete text between mark and cursor; also copy it to the buffer
CTRL-Y Yank contents of the buffer out and insert it at the cursor
CTRL-Q Write the contents of the buffer onto a file

MISCELLANEOUS
numeric + Search forward (prompts for regular expression)
numeric − Search backward (prompts for regular expression)
numeric 5 Display the file status
CTRL-] Go to specific line
CTRL-R Global replace pattern with string (from cursor to end)
CTRL-L Line replace pattern with string
CTRL-W Write the edited file back to the disk
CTRL-X Exit the editor
CTRL-S Fork off a shell (use CTRL-D to get back to the editor)
CTRL-\ Abort whatever the editor was doing and wait for command
CTRL-E Erase screen and redraw it
CTRL-V Visit (edit) a new file

The key bindings on the Atari ST and Amiga are slightly different. The table
below summarizes the mined commands with the corresponding ST keys, and the
PC keys if they differ.

� �
CURSOR MOTION ST key PC key� �
up,down,left,right arrows
start of line CTRL-A
end of line CTRL-Z
top of screen CTRL-ˆ
end of screen CTRL- �
next word CTRL-F
previous word CTRL-B� �

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

18 MANUAL PAGES CHAP. 2

� �
SCREEN MOTION ST key PC key� �
first char of file Home
last char of file F6 End
scroll window up F4 PgUp
scroll window down F3 PgDn
scroll line up CTRL-U
scroll line down CTRL-D� �

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

� �
MODIFYING TEXT ST key PC key� �
delete this char Delete
delete previous char Backspace
delete next word CTRL-N
delete previous word CTRL-P
delete tail of line CTRL-T
open up line CTRL-O
get file at cursor CTRL-G� �

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

� �
MISCELLANEOUS ST key PC key� �
search forward F1 numeric +
search backward F2 numeric −
file status F5 numeric 5
repeat Esc
goto line CTRL-]
global replace CTRL-R
line replace CTRL-L
write file CTRL-W
exit CTRL-X
fork shell CTRL-S
abort CTRL-\
redraw CTRL-E
new file CTRL-V
escape next char F8 ALT-ESC� �

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
BUFFER OPERATIONS ST key PC key� �
set mark F7 CTRL-@
copy to buffer CTRL-C
delete to buffer CTRL-K
insert buffer CTRL-Y
write buffer to file CTRL-Q� �

��
�
�
�
�
�
�

��
�
�
�
�
�
�

SEC. 2.1 MANUAL PAGES 19

Command: mkdir – make a directory
Syntax: mkdir directory ...
Flags: (none)
Examples: mkdir dir # Create dir in the current directory

mkdir /user/ast/dir # Create the specified directory
The specified directory or directories are created and initialized.

Command: mkfs – make a file system
Syntax: mkfs [–Ldot] special prototype
Flags: –L Make a listing on standard output

–d Use mod time of mkfs binary for all files
–o Use a drive other than 0 or 1 (safety precaution)
–t Do not test if file system fits on the medium

Examples: mkfs /dev/fd1 proto # Make a file system on /dev/fd1
mkfs /dev/fd1 360 # Make empty 360 block file system

Mkfs builds a file system and copies specified files to it. The prototype file tells
which directories and files to copy to it. If the prototype file cannot be opened, and
its name is just a string of digits, an empty file system will be made with the
specified number of blocks. A sample prototype file follows. The text following
the # sign in the example below is comment. In real prototype files, comments are
not allowed.

boot # boot block file (ignored)
360 63 # blocks and i-nodes
d--755 1 1 # root directory

bin d--755 2 1 # bin dir: mode (755), uid (2), gid (1)
sh ---755 2 1 /user/bin/shell # shell has mode rwxr-xr-x
mv -u-755 2 1 /user/bin/mv # u = SETUID bit
login -ug755 2 1 /user/bin/login # SETUID and SETGID

$ # end of /bin
dev d--755 2 1 # special files: tty (char), fd0 (block)

tty c--777 2 1 4 0 # uid=2, gid=1, major=4, minor=0
fd0 b--644 2 1 2 0 360 # uid, gid, major, minor, blocks

$ # end of /dev
user d--755 12 1 # user dir: mode (755), uid (12), gid (1)

ast d--755 12 1 # /user/ast
$ # /user/ast is empty

$ # end of /user
$ # end of root directory

The first entry on each line (except the first 3 and the $ lines, which terminate

20 MANUAL PAGES CHAP. 2

directories) is the name the file or directory will get on the new file system. Next
comes its mode, with the first character being –dbc for regular files, directories,
block special files and character special files, respectively. The next two characters
are used to specify the SETUID and SETGID bits, as shown above. The last three
characters of the mode are the rwx protection bits.

Following the mode are the uid and gid. For special files, the major and minor
devices are needed. The size in blocks must also be specified for block special files
(the MINIX block size is 1K; this can only be changed by changing BLOCK � SIZE
and then recompiling the operating system).

Command: mount – mount a file system
Syntax: /etc/mount special file [–r]
Flags: –r File system is mounted read-only
Example: /etc/mount /dev/fd1 /user # Mount diskette 1 on /user

The file system contained on the special file is mounted on file. In the example
above, the root directory of the file system in drive 1 can be accessed as /user after
the mount. When the file system is no longer needed, it must be unmounted before
being removed from the drive.

Command: pwd – print working directory
Syntax: pwd
Flags: (none)
Example: pwd # Print the name of the working directory

The full path name of the current working directory is printed.

Command: rev – reverse the characters on each line of a file
Syntax: rev [file] ...
Flags: (none)
Example: rev file # Reverse each line

Each file is copied to standard output with all the characters of each line
reversed, last one first and first one last.

Command: rm – remove a file
Syntax: rm [–fir] name ...
Flags: –f Forced remove: no questions asked

SEC. 2.1 MANUAL PAGES 21

–i Interactive remove: ask before removing
–r Remove directories too

Examples: rm file # Remove file
rm –i *.c # Remove .c files, asking about each

Rm removes one or more files. If a file has no write permission, rm asks for
permission (type ‘‘y’’ or ‘‘n’’) unless –f is specified. If the file is a directory, it will
be recursively descended and removed if and only if the –r flag is present.

Command: rmdir – remove a directory
Syntax: rmdir directory ...
Flags: (none)
Examples: rmdir /user/ast/foobar # Remove directory foobar

rmdir /user/ast/f* # Remove 0 or more directories
The specified directories are removed. Ordinary files are not removed. The

directories must be empty.

Command: sh – shell
Syntax: sh [file]
Flags: (none)
Example: sh < script # Run a shell script

Sh is the shell. It permits redirection of input and output, pipes, magic charac-
ters, background processes, shell scripts and most of the other features of the V7
(Bourne) shell. A few of the more common commands are listed below:

date # Regular command
sort <file # Redirect stdin
sort <file1 >file2 # Redirect stdin and stdout
cc file.c 2>error # Redirect stderr
a.out >f 2>&1 # Combine standard output and standard error
sort <file1 >>file2 # Append output to file2
sort <file1 >file2 & # Background job
(ls –l; a.out) & # Run two background commands sequentially
sort <file | wc # Two-process pipeline
sort <f | uniq | wc # Three-process pipeline
ls –l *.c # List all files ending in .c
ls –l [a-c]* # List all files beginning with a, b, or c
ls –l ? # List all one-character file names
ls \? # List the file whose name is question mark
ls ′???′ # List the file whose name is three question marks

22 MANUAL PAGES CHAP. 2

v=/usr/ast # Set shell variable v
ls –l $v # Use shell variable v
PS1=′Hi! ′ # Change the primary prompt to Hi!
PS2=′More: ′ # Change the secondary prompt to More:
ls –l $HOME # List the home directory
echo $PATH # Echo the search path
if ... then ... else ... fi # If statement
for ... do ... done # Iterate over argument list
while ... do ... done # Repeat while condition holds
case ... in ... esac # Select clause based on condition
echo $? # Echo exit status of previous command
echo $$ # Echo shell’s pid
echo $# # Echo number of parameters (shell script)
echo $2 # Echo second parameter (shell script)
echo $* # Echo all parameters (shell script)

Command: sleep – suspend execution for a given number of seconds
Syntax: sleep seconds
Flags: (none)
Example: sleep 10 # Suspend execution for 10 sec.

The caller is suspended for the indicated number of seconds.

Command: sort – sort a file of ASCII lines
Syntax: sort [–bcdfimnru] [–tc] [–o name] [+pos1] [–pos2] file ...
Flags: –b Skip leading blanks when making comparisons

–c Check to see if a file is sorted
–d Dictionary order: ignore punctuation
–f Fold upper case onto lower case
–i Ignore nonASCII characters
–m Merge presorted files
–n Numeric sort order
–o Next argument is output file
–r Reverse the sort order
–t Following character is field separator
–u Unique mode (delete duplicate lines)

Examples: sort –nr file # Sort keys numerically, reversed
sort +2 –4 file # Sort using fields 2 and 3 as key
sort +2 –t: –o out # Field separator is :
sort +.3 –.6 # Characters 3 through 5 form the key

SEC. 2.1 MANUAL PAGES 23

Sort sorts one or more files. If no files are specified, stdin is sorted. Output is
written on standard output, unless –o is specified. The options +pos1 –pos2 use
only fields pos1 up to but not including pos2 as the sort key, where a field is a string
of characters delimited by spaces and tabs, unless a different field delimiter is
specified with –t. Both pos1 and pos2 have the form m.n where m tells the number
of fields and n tells the number of characters. Either m or n may be omitted.

Command: sync – flush the cache to disk
Syntax: sync
Flags: (none)
Example: sync # Write out all modified cache blocks

MINIX maintains a cache of recently used disk blocks. The sync command
writes any modified cache blocks back to the disk. This is essential before stopping
the system, and should be done before running any a.out program that might crash.

Command: tail – print the last few lines of a file
Syntax: tail [–cl] [–n] [file] ...
Flags: –c The count refers to characters

–l The count refers to lines
–n How many characters or lines to print

Examples: tail –6 # Print last 6 lines of stdin
tail –1 file1 file2 # Print last line of two files

The last few lines of one or more files are printed. The default count is 10 lines.
The default file is stdin.

Command: tee – divert stdin to a file
Syntax: tee [–ai] file ...
Flags: –a Append to the files, rather than overwriting

–i Ignore interrupts
Examples: cat file1 file2 | tee x # Save and display two files

pr file | tee x | lpr # Save the output of pr on x
Tee copies stdin to standard output. It also makes copies on all the files listed as

arguments.

24 MANUAL PAGES CHAP. 2

Command: time – report how long a command takes
Syntax: time command
Flags: (none)
Examples: time a.out # Report how long a.out takes

time ls –l *.c # Report how long ls takes
The command is executed and the real time, user time, and system time (in

hours, minutes, and seconds) are printed. Shell scripts cannot be timed.

Command: true – exit with the value true
Syntax: true
Flags: (none)
Example: while true # List the directory until DEL is hit

do ls –l
done

This command returns the value true. It is used for shell programming. The
program is in reality not a program at all. It is the null file.

Command: umount – unmount a mounted file system
Syntax: /etc/umount special
Flags: (none)
Example: /etc/umount /dev/fd1 # Unmount diskette 1

A mounted file system is unmounted after the cache has been flushed to disk. A
diskette should never be removed while it is mounted. If this happens, and is
discovered before another diskette is inserted, the original one can be replaced
without harm. Attempts to unmount a file system holding working directories or
open files will be rejected with a ‘‘device busy’’ message.

SEC. 2.1 MANUAL PAGES 25

3

DESCRIPTION OF FULL MINIX 1.5
This chapter gives a summary of what the full MINIX distribution contains. The

first section reproduces the table of contents of the manual. The second section lists
and briefly describes most of the programs provided with MINIX. The third section
names most of the library routines that are standard with MINIX.

3.1. MINIX REFERENCE MANUAL TABLE OF CONTENTS

The Table of Contents of the MINIX Reference Manual is listed below. The
manual is 680 pages long, which includes a cross-referenced listing of the of the
operating system source code (in C).

1 INTRODUCTION 1
1.1 HISTORY OF UNIX 1
1.2 HISTORY OF MINIX 3
1.3 STRUCTURE OF THIS MANUAL 5

2 INSTALLING MINIX ON THE IBM PC, XT, AT, 386, AND PS/2 6
2.1 MINIX HARDWARE REQUIREMENTS 6
2.2 HOW TO START MINIX 7
2.3 HOW TO INSTALL MINIX ON A HARD DISK 10
2.4 TESTING MINIX 20
2.5 TROUBLESHOOTING 22

26 DESCRIPTION OF FULL MINIX 1.5 CHAP. 3

3 INSTALLING MINIX ON THE ATARI ST 24
3.1 THE MINIX-ST DISTRIBUTION 25
3.2 NATIONAL KEYBOARDS 26
3.3 BOOTING MINIX-ST 27
3.4 INCREASING THE SIZE OF YOUR RAM DISK 30
3.5 ADAPTING PROGRAMS TO USE EXTRA RAM 31
3.6 USING SINGLE-SIDED DISKETTES 32
3.7 USING A HARD DISK 33
3.8 USING A MEGA ST 40
3.9 USING A DISK CONTROLLER BASED CLOCK 40
3.10 BOOT PROCEDURE OPTIONS 41
3.11 UNPACKING THE SOURCES 42
3.12 THE TOS TOOLS 43
3.13 TROUBLESHOOTING 45

4 INSTALLING MINIX ON THE COMMODORE AMIGA 51
4.1 MINIX HARDWARE REQUIREMENTS 51
4.2 HOW TO START MINIX 52
4.3 A MORE DETAILED LOOK 54
4.4 TROUBLESHOOTING 58

5 INSTALLING MINIX ON THE APPLE MACINTOSH 59
5.1 MACMINIX HARDWARE REQUIREMENTS 59
5.2 THE MACMINIX DISTRIBUTION 59
5.3 NATIONAL KEYBOARDS 60
5.4 BOOTING MACMINIX 60
5.5 INCREASING THE SIZE OF YOUR RAM DISK 63
5.6 ADAPTING PROGRAMS TO USE EXTRA RAM 64
5.7 USING A HARD DISK 65
5.8 UNPACKING THE SOURCES 69
5.9 THE MENUS 70
5.10 SETTING CONFIGURATION OPTIONS 71
5.11 MACINTOSH SYSTEM CALLS 72
5.12 RUNNING MACMINIX WITH MULTIFINDER 72
5.13 TROUBLESHOOTING 73

6 USING MINIX 74
6.1 MAJOR COMPONENTS OF MINIX 74
6.2 PROCESSES AND FILES IN MINIX 79
6.3 A TOUR THROUGH THE MINIX FILE SYSTEM 84
6.4 HELPFUL HINTS 88
6.5 SYSTEM ADMINISTRATION 93

7 RECOMPILING MINIX 97
7.1 REBUILDING MINIX ON AN IBM PC 97

SEC. 3.2 MINIX REFERENCE MANUAL TABLE OF CONTENTS 27

7.2 REBUILDING MINIX ON AN ATARI ST 103
7.3 REBUILDING MINIX ON A COMMODORE AMIGA 109
7.4 REBUILDING MINIX ON AN APPLE MACINTOSH 109

8 MANUAL PAGES 115

9 EXTENDED MANUAL PAGES 189
9.1 ASLD—ASSEMBLER-LOADER [IBM] 189
9.2 BAWK—BASIC AWK 198
9.3 DE—DISK EDITOR 202
9.4 DIS88—DISASSEMBLER FOR THE 8088 [IBM] 207
9.5 ELLE—FULL-SCREEN EDITOR 208
9.6 ELVIS—A CLONE OF THE BERKELEY VI EDITOR 216
9.7 IC—INTEGER CALCULATOR 236
9.8 INDENT—INDENT AND FORMAT C PROGRAMS 239
9.9 KERMIT—A FILE TRANSFER PROGRAM 243
9.10 M4—MACRO PROCESSOR 246
9.11 MDB—MINIX DEBUGGER [68000] 249
9.12 MINED—A SIMPLE SCREEN EDITOR 253
9.13 NROFF—A TEXT PROCESSOR 257
9.14 PATCH—A PROGRAM FOR APPLYING DIFFS 266
9.15 ZMODEM—FILE TRANSFER PROGRAM 269

10 SYSTEM CALLS 274
10.1 INTRODUCTION TO SYSTEM CALLS 274
10.2 LIST OF MINIX SYSTEM CALLS 275

11 NETWORKING 277
11.1 INTRODUCTION 277
11.2 OBJECTS 279
11.3 OVERVIEW OF TRANSACTIONS 281
11.4 TRANSACTION PRIMITIVES 282
11.5 SERVER STRUCTURE 286
11.6 CLIENT STRUCTURE 287
11.7 SIGNAL HANDLING 287
11.8 IMPLEMENTATION OF TRANSACTIONS IN MINIX 288
11.9 COMPILING THE SYSTEM 289
11.10 HOW TO INSTALL AMOEBA 289
11.11 NETWORKING UTILITIES 290
11.12 REMOTE SHELL 290
11.13 SHERVERS 292
11.14 MASTERS 292
11.15 FILE TRANSFER 293
11.16 REMOTE PIPES 293
11.17 THE ETHERNET INTERFACE 293

28 DESCRIPTION OF FULL MINIX 1.5 CHAP. 3

A MINIX SOURCE CODE LISTING 296

B CROSS REFERENCE MAP 637

3.2. PARTIAL LIST OF PROGRAMS SUPPLIED WITH MINIX

Below is a list of programs that are supplied with MINIX. Those lines that have
[IBM], [68000], or another machine type only apply to the machine type specified
in the square brackets. The complete source code of all these programs, except for
elle and the C compiler are part of the standard MINIX package.

animals – twenty-questions type guessing game about animals
anm – print name list [68000]
aoutdump – display the contents of an object file [68000]
ar – archiver
as – MC68000 assembler [68000]
ascii – strip all the pure ASCII lines from a file
asize – report the size of an object file [68000]
asld – assembler-loader [IBM]
ast – add symbol table to executable file [IBM]
astrip – remove symbols [68000]
at – execute commands at a later time
backup – backup files
badblocks – put a list of bad blocks in a file
banner – print a banner
basename – strip off file prefixes and suffixes
bawk – pattern matching language
btoa – binary to ascii conversion
cal – print a calendar
cat – concatenate files and write them to stdout
cc – C compiler
cdiff – context diff
cgrep – grep and display context
chgrp – change group
chmem – change memory allocation
chmod – change access mode for files
chown – change owner
clr – clear the screen
cmp – compare two files
comm – print lines common to two sorted files
compress – compress a file using modified Lempel-Ziv coding
cp – copy file

SEC. 3.1 PARTIAL LIST OF PROGRAMS SUPPLIED WITH MINIX 29

cpdir – copy a directory and its subdirectories
crc – print the checksum of the file data
cron – clock daemon
ctags – build a tags file
cut – select out columns of a file
date – print or set the date and time
dd – disk dumper
de – disk editor
df – report on free disk space and i-nodes
dhrystone – integer benchmark
diff – print differences between two files
dis88 – disassembler [IBM]
diskcheck – check a disk for bad sectors
diskcopy – copy a disk with only one drive [AMIGA]
diskrtc – set date from a disk controller real time clock [ATARI]
diskset – set real time clock on disk controller [ATARI]
dosdir – list an MS-DOS directory [IBM]
dosread – read a file from an MS-DOS diskette [IBM]
doswrite – write a file onto an MS-DOS diskette [IBM]
du – print disk usage
echo – print the arguments
ed – editor
eject – eject a diskette from a drive [MACINTOSH]
elle – ELLE Looks Like Emacs
elvis – clone of the Berkeley vi editor
ex – Berkeley line editor
expand – convert tabs to spaces
expr – evaluate experession
factor – factor an integer less than 2**31
fdisk – partition a hard disk [IBM]
fgrep – fast grep
file – make a guess as to a file’s type based on contents
find – find files meeting a given condition
fix – generate new file from old one and diff listing
fold – fold long lines
format – format a diskette [ATARI]
fortune – print a fortune
from – input half of a connection [IBM]
fsck – perform file system consistency check
gather – gather up the files in a directory for transmission
getlf – wait until a line has been typed
getty – get terminal line parameters for login
grep – search a file for lines containing a given pattern

30 DESCRIPTION OF FULL MINIX 1.5 CHAP. 3

gres – grep and substitute
head – print the first few lines of a file
hdclose – close hard disk partition [MACINTOSH]
hdopen – set correspondence of a HD partition [MACINTOSH]
ic – integer calculator
id – print the uid and gid
ifdef – remove #ifdefs from a file
indent – reformat the layout of a program
inodes – print i-node information
kermit – transfer a file using the kermit protocol
kill – send a signal to a process
last – display recent on-line session records
leave – warn when it is time to go home
libpack – pack an ASCII assembly code file [IBM]
libupack – convert a packed assembly code file to ASCII [IBM]
ln – create a link to a file
login – log into the computer
look – look up words in dictionary
lorder – compute the order for library modules [IBM]
lpr – copy a file to the line printer
ls – list the contents of a directory
m4 – macro processor
maccreate – create an empty macintosh file [MACINTOSH]
macfile – list, read and write Macintosh volumes [MACINTOSH]
macread – read a Macintosh file [MACINTOSH]
macwrite – write a Macintosh file [MACINTOSH]
mail – send and receive electronic mail
make – a program for maintaining large programs
man – display manual page
master – control the creation of shervers [IBM]
mdb – MINIX debugger [68000]
megartc – set date from real time clock [Mega ST]
mined – MINIX editor
minix – MINIX bootstrap [AMIGA]
mkdir – make a directory
mkfs – make a file system
mknod – create a special file
mkproto – create a MINIX prototype file
modem – switch the modem and getty state
more – pager
mount – mount a file system
mref – make listing and cross reference map of MINIX
mv – move or rename a file

SEC. 3.1 PARTIAL LIST OF PROGRAMS SUPPLIED WITH MINIX 31

nm – print name list
nroff – text formatter
od – octal dump
passwd – change a login password
paste – paste multiple files together
patch – patches up a file from the original and a diff
pr – print a file
prep – prepare a text file for statistical analysis
pretty – MINIX pretty printer
printenv – print out the current environment
printroot – print the name of the root device on standard output
ps – print process status
pwd – print working directory
rcp – remote copy [IBM]
readall – read a device quickly to check for bad blocks
readclock – read the real time clock [IBM PC/AT and AMIGA]
readfs – read a MINIX file system
recover – recover files that have been removed.
ref – look up a reference in a tags file
rev – reverse the characters on each line of a file
rm – remove a file
rmaker – a simple resource compiler [MACINTOSH]
rmdir – remove a directory
roff – text formatter
rsh – remote shell for networking [IBM]
rz – receive a file using the zmodem protocol
sed – stream editor
settype – set type and/or creator of a Mac file [MACINTOSH]
sh – shell
shar – shell archiver
sherver – shell server [IBM]
size – print text, data, and bss size of a program
sleep – suspend execution for a given number of seconds
sort – sort a file of ASCII lines
spell – print all words in a file not present in the dictionary
split – split a large file into several smaller files
strings – print all the strings in a binary file
strip – remove symbol table from executable file
stterm – turn system into a dumb terminal [68000]
stty – set terminal parameters
su – temporarily log in as superuser or another user
sum – compute the checksum and block count of a file
svc – shell version control system

32 DESCRIPTION OF FULL MINIX 1.5 CHAP. 3

sync – flush the cache to disk
sz – send a file using the zmodem protocol
tail – print the last few lines of a file
tar – tape archiver
tee – divert stdin to a file
term – turn PC into a dumb terminal [IBM]
termcap – print the current termcap entry
test – test for a condition
time – report how long a command takes
to – output half of a connection [IBM]
tos – list, read and write TOS file systems [ATARI]
touch – update a file’s time of last modification
tr – translate character codes
transfer – read, write and format diskettes [AMIGA]
traverse – print directory tree under the named directory
treecmp – recursively list differences in two directory trees
true – exit with the value true
tset – set the $TERM variable
tsort – topological sort [IBM]
ttt – tic tac toe
tty – print the device name of this tty
umount – unmount a mounted file system
unexpand – convert spaces to tabs
uniq – delete consecutive identical lines in a file
unshar – Remove files from a shell archive
update – periodically write the buffer cache to disk
users – list the logged-in users
uud – decode a binary file encoded with uue
uue – encode a binary file to ASCII (e.g., for mailing)
vi – (see elvis)
virecover – recover from a crash
vol – split stdin into diskette-sized volumes
wc – count characters, words, and lines in a file
weidertc – set date from Weide real time clock [ATARI]
whatsnew – print a newly modified file, marking changes
whereis – examine system directories for a given file
which – examine $PATH to see which file will be executed
who – print list of currently logged in users
whoami – print current user name
width – force all the lines of a file to a given width
write – send a message to a logged-in user

SEC. 3.2 PARTIAL LIST OF THE MINIX LIBRARY 33

3.3. PARTIAL LIST OF THE MINIX LIBRARY

Below is a listing of the three principal library directories, ansi, posix, and
other. These lists are approximate, as there are some minor differences between the
various versions. The sources for all these library routines are included in the
MINIX package (as are the binaries, of course).

3.3.1. Ansi Directory

Makefile abort abs assert atoi atol bsearch ctime ctype errno exit fclose fflush fgetc
fgets fopen fprintf fputc fputs fread freopen fseek ftell fwrite getenv gets malloc
memchr memcmp memcpy memmove memset perror puts qsort rand scanf setbuf
signal sincos sprintf strcat strchr strcmp strcoll strcpy strcspn strerror strlen strncat
strncmp strncpy strpbrk strrchr strspn strstr strtok strtol strtoul strxfrm system time
tmpnam ungetc vsprintf

3.3.2. Posix Directory

Makefile � exit access alarm chdir chmod chown close closedir creat ctermid cuserid
dup dup2 exec execlp fcntl fdopen fork fpathconf fstat getcwd getegid geteuid get-
gid getgrent getlogin getpid getppid getpwent getuid isatty kill link lseek mkdir
mkfifo open opendir pathconf pause pipe read readdir rename rewinddir rmdir set-
gid setuid sleep stat sysconf times ttyname umask unlink utime wait write

3.3.3. Other Directory

Makefile amoeba bcmp bcopy brk bzero call chroot cleanup crypt curses doprintf
ffs getdents getopt getpass gtty index ioctl itoa lock lrand lsearch memccpy mes-
sage mknod mktemp mount nlist popen printdat printk prints ptrace putenv regexp
regsub rindex seekdir stb stderr stime stty swab sync syslib telldir termcap umount
uniqport vectab

3.4. ADDITIONAL SOFTWARE

The MINIX package consists of boot diskettes, the binaries of nearly 200 system
utilities, a C compiler, the sources of the complete operating system (in C), the
sources of the utility programs, and the sources of the library. In addition, the pack-
age contains ANSI and POSIX compatible header files /usr/include/*.h), and exten-
sive test software. Furthermore, MINIX comes standard with networking software to
connect multiple IBM machines on an Ethernet. This software allows file transfer,
remote login, cross-machine pipes, and many other features. One particularly
interesting aspect of it, is that it also works on a single machine, so you can develop

34 DESCRIPTION OF FULL MINIX 1.5 CHAP. 3

networking software alone. The binary programs so produced will run on a net-
work of MINIX machines without modification or even recompilation.

A Pascal compiler is also available from third-party vendors.
Finally, there is a large and active MINIX community that operates on USENET.

Over 16,000 people belong to this group, which is described in the MINIX Reference
Manual.

