38

RECOMPILING MINIX

This chapter is intended for those readers who wish to muhfx or its utili-
ties. Inthe folloving pages we will tell what theavious files do and kothe pieces
are put together to form the wholét should be emphasized that if you simply
intend to usaMINIX as distriluted, then you do not ha o recompile the system and
you do not hee read this chapterHoweva, if you want to mak changes to the
core of the operating system itself, foaenple, to add a dece driver for a streamer
tape, then you should read this chapter

8.1. REBUILDING MINIX ON THE IBM PC

Although this section is specifically for IBM PC users, it should also be read
carefully by @eryone interested in recompilingiNiX. Most of what is said here
applies to all @rsions ofMINIX. The sections about other processors mostly discuss
the diferences between recompilingNIX on an IBM PC and on another system.

TheMINIX sources are contained in the faliag directories, normally all subdi-
rectories ofusr/sic except forincludewhich goes irfusr/include

center allbox; | I. Directory Contents include The headers used by the

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 113

commands (has mvaubdirectories) &rnelProcessnessage, and I/0O dee handling

mm Thememory manager fs The file system tooldMiscellaneous tools and
utilities test Test programs lib Libraries (has seral subdirectories)
commands Thaetility programs (has mamsubdirectories)

Some of the directories contain subdirectoriésou are working on a hard disk, be
sure that all these directoriesvhaeen set up, and all files copied there from the dis-
tribution dislettes and decompressed and degechi If you do not hee a tard disk,
format and mak& empty file systems on fer dskettes. Onthe first one, mak a
directorykernel and cop all the kernel files to it.In a similar vay, prepare diskttes
for fs, mm tools andtestas well. If you do not hae a tard disk, there are still three
ways you can recompile the systeffirst, if you hae wo dskette drves, use dre
0 to hold the root file system, including the compiléusr/lib and /usr/include
Diskettes with programs to be compiled are mounted ~e dri

Second, if you hae a sifficiently lage RAM disk (at least 512K), you can put
the root file system there, along with the compilesr/lib and/usr/include

Third, if you have ro hard disk, one disite drve and insuficient memory for a
512K RAM disk, you should va & least a 1.2M digkte drve in which you can
put the root file system, although in a pinch a 720Keattskmight verk with a lot of
shoehorning. Ifyou use this approach, each of thes fiskettes made alve must
contain enough adfusr/bin, /usr/lib, and /usr/includeto allov compilation of the kr-
nel, file system, or whater other files are on that diskVith only 640K RAM and a
single 360K disktte, it is not possible to recompile the systdimpanded memory
(LIM standard) is not supported and cannot be used as a RAM disk.

As a test to see ifverything is set up properlyype in, compile, and run the fol-
lowing program:

#include <limits.h>
main()
{
printf(""PATH_MAX = %d n", PATH_MAX);

}

It should print out thealue 255 foPATH_MAX. If it fails to compile, be sure that
the file/usr/include/limits.hs installed and readable.

8.1.1. Configuringthe System

The file /usr/include/minix/configp contains some useettable parameters.
Examine this file and mak any changes that you requireFor example, if
LINEWRAPIs set to 0, then lines longer than 80 characters will be truncated; with
nonzero alues thg will be wrapped.If you want more information than is proed
in this file, xéamine the system sources themss)\for @ample, usingyrepto locate

114 RECOMPILING MINIX CHAP 8

the releant files. In ary event, be sureMACHINE is set tolBM_PC (or one of the
68000 types if you hee me). Ifyou hare an 80386-based processase | BM_PC,

not IBM_386 as that is intended for a future 32-biension ofMINIX, and will not

work at present.The current 16-bit ersion vorks fine on 80386s,ub initializes all
segment descriptors to 16-bit mode.

The lkernel directory contains a shell scrgquinfig Before starting to compile the
system, gamine this file using youaf/arite editor You will see that it bgins with
a casestatement that switches on the firgjuanent. Eaclof the clauses defines
some wariables that are used latéfhe idea here is that you need files caiiguk.x
klib.x, and wini.c. For each of these there areva@l candidates.Which one you
use depends on the your system configuration.

If you have a FC/AT with a PC/A hard disk controllertype:

config at

to set up the filesOn the otherif you have a FC/XT (8088), usext instead ofat as
the agument. Br a PS/2, uses If none of these produceorking systems, run
configagain usingbiosas the agument this time.f you happen to hae a FC with a
PC/AT disk controller or a PC/Rwith an XT disk controlleryou will have o build
the configuration by hand.

8.1.2. Compilingthe Pieces

Once eerything has been set up, actually compiling the pieces is éasy go
to thekernel directory on you hard disk (or mount tkernel diskette and go to it).
Then type:

make —n

to see whamale is planning to do.Normally it will list a sequence of compilations
to be done.If it complains that it cannot find some file, please install the file.
Now do it for real by typing:

make

The lernel will be compiled.On a 33 MHz 80386 with aét hard disk, it will tad
under 3 minutesOn a 4.77 MHz 8088 with twvdiskette drves it will take rather
longer When it is finished, you will be left with a collection sffiles, all of which
can nev be removed if space is tight, and a fikernel, which will be needed.

If you have a snall system, it is possible that there will not be enough room for
male and the C compiler simultaneously that case type:

make —n >script
sh script

If even that fails due to lack of memorgxaminescript and type in all the com-
mands by hand, one at a time.

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 115

Now go to fs. If you are using digktes, first unmount the one containing the
kernel sources and mount the one containing the file system soNoedype

make —n
to see if gerything is all right, follaved by:
make

to do the work. Again here, thes can be remed, kut the filefs must be kpt. Ina
similar way, go to mmand usemale to produce thenmfile.
Finally, go to toolsand type:

make

to producenit, bootblok build, and menu (Actually a binary ersion ofbootblokis

provided since it is so shortubmaking a n& one does not takwery long.) Check
to see that all of them ta been madelf one is missing, usmale to produce it, for
example:

make init

8.1.3. Buildingthe Boot Diskette

In this section we will describe tothe six independently compiled and latk
programskernel, fs, mm init, bootblok and menuare foged together to makthe
boot dislette usingouild.

The boot disktte contains the six programs mentionedvabim the order gien.
The boot block occupies the first 512 bytes on the didken the computer is
turned on, the M gets control and tries to read the boot block fronaed@ nto
memory (at address 0x7C00 on the IBM P@)his read succeeds, thé®©ORI jumps
to the boot block to lggn the load.

TheMINIX boot program first copies itself to an address justvb@B6K, to get
itself out of the vay. Then it calls the BIOS repeatedly to loadireders of data into
low core. Thisdata is the bootable image of the operating systemwetiadirectly
by menu(on the IBM PC).When the loading is finished, the boot program jumps to
the start ofmeny which then displays the initial menut the user types an equal
sign,menujumps to an address inviacore to starmiINIX .

The boot disktte is generated byols/luild. It takes the six programs listed
abore and concatenates them in a speciaywThe first 512 bytes of the boot
diskette come frontbootblok If need be, some zero bytes are added tdopatblok
out to 512. Bootblokdoes not hee a leader and neither does the boot dette
because when theOM loads the boot block to address 0x7COO0xpests the first
byte to be the start of the first instruction.

At position 512, the boot diskte contains theeknel, agin without a header
Byte 512 of the boot dighte will be placed at memory address 1536 by the boot

116 RECOMPILING MINIX CHAP 8

program, and will bex@cuted as the firguiNIX instruction whermenuterminates.
After the lernel comesnm fs, init, and meny each padded out to a multiple of 256
bytes so that the Reone bgins at a click boundary

Each of the programs may be compiled either with or without separate | and D
space (on the IBM PC; the 68008rsions do not he this feature). The two mod-
els are diferent, lut build explicitly checks to see which model each program uses
and handles itIn short, whatuild does is read six files, stripping the headefs of
the last fie o them, and concatenate them onto the output, rounding the first one up
to 512 bytes and the rest up to a multiple of 16 bytes.

After concatenating the six filelsuild makes three patches to the output.

1. Thelast 4 words of the boot block are set to the numberytihders to
load, and the DS, PC, and C&lues to use for runningenu The boot
program needs this information so that it can jumménuafter it has
finished loading.Without this information, the boot progranowd not
know where to jump.

2. Build loads the first 8 wrds of the krnels data sgment with the CS
and DS sgment rgister \alues forkernel, mm fs, and init. Without
this information, the &rnel could not run these programs when the time
came: it would not knev where thg were. Italso sets wrd 4 of the
kernel’'s text segment to the DSalue needed to run therel.

3. Theorigin and size ofnit are inserted at address 4 of the file syssem’
data spaceThe file system needs this information to Wnehere to put
the RAM disk, which bgins just after the end darfit, exactly overwrit-
ing the start ofnenu

To havebuild actually construct the meboot dislette, insert a blank, formatted
diskette in drve O and type:
make image

It will run, build the boot disktte, and display the sizes of the pieces on the screen.
When it is finished, kill apbackground processes, deyng and reboot the system.
After logging in, go theestdirectory and type:

run

to run all the test programs, assuming/thavealready been compiledf they have
not been, log in as root and type:

make all

If you do not hee a tard disk, the ab@ procedure has to be modified slightly
You will have o copy the kernel, fs, and mmfiles to thetools directory and change
Makefileaccordingly

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 117

8.1.4. InstallingNew Device Drivers

Once you hee successfully reached this point, you willmdoe ale to modify
MINIX . In general, if a modification only fEcts, saythe file system, you will not
have © recompile the memory manager arkel. Ifa modification afects ay of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is concevable that your modification has increased the size of some file so
much that the compiler complains about lit.this occurs, try to determine which
pass it is using thev flag to cc, and then gre that pass more memory using the
chmemprogram.

One common modification is addingm&O devices and dxiers. To add a n&v
I/O device toMINIX, it is necessary to write a dmr for it. The nev driver should
use the same message irded as thexasting ones.The drver should be put in the
directory kernel and Makefile updated. Inaddition, the entry point of the wetask
must be added to the list contained in the ataakin kernel/tablec.

Two changes are also required /usr/include/minix In const.ih the constant
NR_TASKShas to be increased by 1, and thevnask has to be gen a rame in
com.h

A new gpecial file will have o be aeated for the dver usingmknod

To tell the file system which task is handling thevrspecial file, a line has to be
added to the arraymapin fs/tablec.

8.1.5. Toubleshooting

If you modify the system, there isnays the possibility that you will introduce
an error In this section, we will discuss some of the more common problems and
how to track them dan.

To dart with, if something is acting strange, turn the computerwit about
one minute, and reboot from scratclihis gets werything into a knan state.
Rebooting with CTRL-AI-DEL may leae the system in a peculiar state, which
may be the cause of the trouble.

If a message lik

Booting MINIX 1.5

does not appear on the screen after thveepon self-tests hae completed (on the
IBM PC), something is wrong with the boot blockhe boot block prints this mes-
sage by calling the BIOSMake a dump of the first block of the boot distte and
examine it by hand to see if it contains the proper program.

If the above message appeargjtithe initial menu does not, it is &k thatmenu
is not being started, since the first thmgnudoes is print the menuCheck the last
6 bytes of the boot block to see if thegagent and déet put there byuild corre-
spond to the address at whitlenuis located (right afteinit).

If the menu appearsubthe system does not respond to the equal sigux is

118 RECOMPILING MINIX CHAP 8

probably being startedubcrashing during initializationOne possible cause is the
introduction of print statements into therkel. Havever, it is not permitted to dis-
play arything until after the terminal task has run to initialize itsdé¥e careful
about where you put the print statements.

If the screen has been cleared and the messagg the sizes has appeared, the
kernel has initialized itself, the memory manager has run and dafloa&iting for a
message, and the file system has started runiiinig. message is printed as soon as
the file system has read the sublerck of the root file system.

If the system appears to hang before or after reading the root file system, some
help can be obtained by hitting the F1 or F2 functieys Kunless the dump routines
have keen remwued). By hitting F1 twice a f& seconds apart and noting the times
in the displayit may be possible to see which processes are runtinfpr exam-
ple, init is unable to fork, for whater reason, or cannot opéatc/ttys or cannot
execute/bin/shor /bin/login, the system will hang,ut process 2igit) may continue
to use CPUyxles. Ifthe F1 display shws that process 2 is constantly running, it is
a good bet thatnit is unable to mak a ystem call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message
and each outgoing replyRecompile and test the system with thevroaitput.

8.2. REBUILDING MINIX ON THE A TARI ST

It is possible to ralild MINIX-ST on ary system with at least 1 MB of memory
and a 720K disk dve. Howeve such a configuration is the bare minimum. Addi-
tional hardvare greatly speeds up the process.

8.2.1. Configuringthe System

In order to rehild MINIX-ST you must first prepare your systeriVhat you
must do depends on your systelhyou have a tard disk, you should install all the
sources and binaries on your disBhapter 3 describes Wdo achieve tis.

If you do not hae a tard disk, you should create 4 720K diskihese disks
should contain the unpaet mm, fs, krnel and tools sources respedti. Chapter 3
describes hw to unpack the sources.

If you want to reconfigure the system you shoulgameine the files
include/minix/confidh and include/minix/boot.h These files are found on 062K,
and contain a number of tunable system paramekesinstance if you &ep your
root partition on/dev/hd3 but you do not want to load this partition into the RAM
disk upon startup, you could change the line

#define DROOTDEV (DEV_RAM + 0)

in include/minix/boot.lnto

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 119

#define DROOTDEV (DEV_HDO + 3)

If you do not vant to cop the root partition, bt you want to keep a RAM disk, you
should modify the alue of the constam@RAMSIZEin include/minix/boot.fas well.

If you have a ystem with a United Kingdom or Germamykoard, it is recom-
mended to go to the directory with therkel sources, and substitute in the file
Makefile, the stringusin the line:

KEYMAP = keymap.us.h

by uk or ge respectrely. If you do this you will generataiNiX for use with your
natve keyboard instead of a US on8y doing so, you do not need to rfixkeys on
your boot disk ajpmore.

If you have a gstem with a real time clock on the disk controller it is recom-
mended to go to the directory with therkel sources, and modify the firsivfenes
of the fileMakefile so that thg read:

CLOCKS = -DCLOCKS
#CLOCKS =

8.2.2. Relnilding MINIX Using a Hard Disk

Reluilding MINIX is fairly simple when you hee a fard disk. Assuming that you
have installed the sources iusr/sic, and that there is enough free space on your
hard disk to accommodate all object files and results, type:

chmem =110000 /ust/lib/cem
cd /usr/src/mm

make

cd /usr/src/fs

make

cd /usr/src/kernel

make

cd /usr/src/tools

make

If disk space is tight you can remedl .o files after each mak If eveything suc-
ceeds, you will hee a fle calledminix.imgin /usr/sic/tools You can either write this
file to TOS using thetoswritecommand, or create awmdoot dislette by inserting an
empty formatted disk into the disk &g and issuing the command:

cp /usr/src/tools/minix.img /dev/fd0

Now you can logout and reboot the system to try yow Ip@ot disk. If required
run theTos programfixkeys to modify the leyboard tables to reflect your harane.
It is advised to generate awéle /etc/psdatabasevhich is used by thpsprogram.

120 RECOMPILING MINIX CHAP 8

The command:
ps —-U

will make this file for you. Do not faget to cop /etc/psdatabast® your root disk!

8.2.3. Relnilding MINIX Using 1 MB or T wo 720K Disk Drives

If your have nore than 1 MB of memoryour should create a huge RAM disk.
The size of the RAM disk is not critical. A RAM disk of 1 MB will dajtbmore
does not harm youln addition to the usual contents of the RAM disk, you should
also cop disk 06.ACK onto the RAM disk. ke care that the arious compiler
passes are found lastr/lib or /lib.

If you have wo dsk drives you should use one &g o hold the 06.ACK disk.
This disk should be mounted dmsr. The other due will be used to hold the disks
with the sources. & will also need a RAM disk which has at least 150 KB free.

In both cases after setting upeeute the follaving steps:

cd/
chmem =110000 /usr/lib/cem

Insert 03.USR1 into the disk de and type:

mount /dev/ddO /user

cp /user/bin/dd /bin/dd

cp /user/bin/make /bin/make
umount /dev/dd0

Insert the disk with the mm sources into the diskedand type:

mount /dev/ddO /user

cd /user/src/mm

make

cp mm.mix /tmp/mm.mix
cd/

umount /dev/ddO

Insert the disk with the tools sources into the diskedand type:

mount /dev/ddO /user

mkdir /user/src/mm

cp /tmp/mm.mix /user/src/mm/mm.mix
rm /tmp/mm.mix

umount /dev/dd0

Insert the disk with the fs sources into the diskedend type:

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 121

mount /dev/ddO /user
cd /user/srcl/fs

make

cp fs.mix /tmp/fs.mix
cd/

umount /dev/dd0

Insert the disk with the tools sources into the diskedand type:

mount /dev/ddO /user

mkdir /user/src/fs

cp /tmp/fs.mix /user/src/fs/fs.mix
rm /tmp/fs.mix

umount /dev/ddO

Insert the disk with thedtnel sources into the disk diand type:

mount /dev/ddO /user

cd /user/src/kernel

make

cp kernel.mix /tmp/kernel.mix
cd/

umount /dev/ddO

Insert the disk with the tools sources into the diskedand type:

mount /dev/ddO /user

mkdir /user/src/kernel

cp /tmp/kernel.mix /user/src/kernel/kernel.mix
rm /tmp/kernel.mix

cd /user/src/tools

make

cp minix.img /tmp/minix.img

cd/

umount /dev/dd0O

If everything succeeds, you will ke a fle calledminix.imgin /tmp. You can
either write this file toTos using thetoswrite command, or create a wieboot
diskette by inserting a blank, formatted ditfle into the disk dve and then typing:

cp /tmp/minix.img /dev/fd0

Now you can log out and reboot the system to try yow beot disk. If
required run thaos programfixkeys to modify the leyboard tables to reflect your
hardware. Itis advised to generate awéle /etc/psdatabasevhich is used by the
psprogram. The command:

ps -U

122 RECOMPILING MINIX CHAP 8

will make this file for you. Do not faget to cop /etc/psdatabast your root disk!
Refer to Sec. 3.12 if your meboot disk does not function properly

8.2.4. Relilding MINIX Using 1 MB and a 720K Disk Drive

Rehuilding MINIX with only one 720K disk dve and 1 MB of memory is some-
what more complicatedTherefore it is highly recommended to study this subsec-
tion completely beforeven atempting to rebild MINIX . First you hae o prepare
a compiler disk. This is done by making a gapf 06.ACK. Remae dl but the fol-
lowing files from your nely created compiler diskbin/as, bin/cc, lib/cem, lib/cg
lib/crtso.o, lib/cy lib/end.o, lib/head.o, lib/ld, lib/libc.a, lib/opt, include/tall files
in includeand its subdirectories) Momount the USR1 disk and cpphe following
programs totmp malke, mned, dd, cpdir Then mount your compiler disk, and
copy these programs onto the bin directory of the compiler disk. After doing so you
should remwe them from/tmp.

Make a ®t of source disks as specified in thevres subsectionReboot the
system with a root disk which contains a 400 KB RAM ditglag in as root.
Unmount the usr filesystem, and mount your compiler disk on /usr

Now we ae ready to start the compilation proce8y. and lage, the net steps
are similar to the one from the preus subsectionHowever, ance you hae aly
one drve, which holds the compiler disk, the sources are going toeipe ik the
RAM disk. During the remainder of this subsection we will assume that your
sources aredpt in/tmp/sc.

Wheneer it is dated that you should insert a disk with sources you should
unmount your compiler disk. Mount the disk which contained the sources on which
you were vorking. Then cop the contents ofusr/sic back to the disk where the
sources came from. This is most easily done through the command:

cpdir —msv /tmp/src /usr/src
Now erase your source directory by issuing the command:
cd /tmp/src; rm —rf %

Unmount your old source disk and mount thevrame. Copy the sources to the
RAM disk by typing:

cpdir —msv /ustr/src /tmp/src

Wheneer the steps tell you to issue the commamale, you should type:
make —n >script

followed by the command:
sh —v script

Now the sources are being compiled. This cae @dubstantial amount of time. It is

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 123

possible that during the compilation process your RAM disk runs out of space. This
is reported by the message:

No space left on device 1/0

If that happens, you should delete all source files witbnsion.c that are already
compiled. Do NO remove files with a.h or .0 extension or files that are not yet
compiled. Modifythe file script usingnined Remove dl lines preceding the line

on which your RAM disk ran out of space. Do not regmdne line on which the
error occurred, since that file is not yet completely processed. After modifying the
file script, restart the compilation process by re-issuing the command:

sh —v script

Notice agin that all sources which are compiled reside on the RAM disk in the
directory/tmp/sc. Wheneer issuing commands kimale andrm, be aure that you

are indeed on the RAM disk, and that you are not accidently cluttering up your com-
piler disk or one of your source disks.

8.2.5. InstallingNew Device Drivers

Once you hee successfully reached this point, you willmdoe ale to modify
MINIX . In general, if a modification only f&cts, saythe file system, you will not
have o recompile the memory manager arkel. Ifa modification afects ay of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is concevable that your modification has increased the size of some file so
much that the compiler complains about lit.this occurs, try to determine which
pass it is using thev flag tocc, and then gre that pass more memory usiognem

One common modification is addingm&O devices and dxiers. To add a n&v
I/O device toMINIX, it is necessary to write a dmr for it. The nev driver should
use the same message irded as thexasting ones.The drver should be put in the
directorykernel and Makefile should be updatedin addition, the entry point of the
new task must be added to the list contained in the aaskin kernel/tablec.

Two changes are also required in thsr/include/minixdirectory In const.h the
constantNR_TASKShas to be increased by 1, and thevask has to be gen a
name incom.h

A new ecial file will have 10 be aeated for the dver. This can be done with
mknod

To tell the file system which task is handling thevrspecial file, a line has to be
added to the arraymapin fs/tablec.

124 RECOMPILING MINIX CHAP 8

8.2.6. RecompilingCommands and Libraries

The procedure for recompiling the commands and the library is similar to the
one for recompiling thedenel.

A major difference between recompiling commands and recompilingeheek
is that each command (and each library module) can be recompiled independently of
all the others, so that less RAM disk is needed.

In order to runmale in the commands directory you shouldrlggmale 35000
bytes of memory by issuing the command:

chmem =35000 /usr/bin/make

A few ommmand source files are so big that the compiler complains abdiit it.
this occurs, try to determine which pass it is using-thélag tocc, and then gre
that pass more memory usidgmem

Should the compiler run out of temporary space during a compilation you can
either use a lger RAM disk, or you can tell the compiler to put its temporary files
in another directory (on disk). AddTdir to the compile command if youant to
create the temporary files in directaty.

8.3. REBUILDING MINIX ON THE COMMODORE AMIGA

To rekuild MINIX on the Ami@, you need at least 1M of memorihe procedure
is the same as for a 1M Atari, as described earlier in this chafteronly difer-
ence is that instead of cgpg the minix.imgfile to /dev/fd0 you have o transfer
minix.imgto an Ami@DOS flopp, usingtransfer The act details are gen in the
manual page dfansferin chapter 8.

8.4. REBUILDING MINIX ON THE MA CINT OSH

This section describes the procedure foilding the boot application and the
kernel programs for the Macintoslension ofMINIX . Before continuing, see section
7.1 for a description of the source directories.

If you are working on a hard disk, be sure that all these directoris legen set
up, and all files copied there from the digitibn dislettes and decompressed and
dearchved.

If you do not hae a lard disk, there are a couple odys you can recompile the
system. Firstif you have wo dskette drives, use one dre © hold the root file sys-
tem, including the compilefusr/lib and/usr/include Diskettes with programs to be
compiled are mounted on the othewdri

Second, if you hae emough memory for a sfid¢iently lage RAM disk, you can
put the root file system there, along with the compiflesr/lib and/usr/include

SEC. 84 REBUILDING MINIX ON THE MA CINTOSH 125

If you a system with only one diske drve, no hard disk, and institient mem-
ory for a lage RAM disk, it is probably not possible to recompile the system.

As a test to see ifverything is set up properlgype in, compile, and run the fol-
lowing program:

#include <limits.h>
main()

{
printf("PATH_MAX = %d n"', PATH_MAX);

}

It should print out thealue 255 foPATH_MAX
8.4.1. Configuringthe System

The file /usr/include/minix/configp contains some useettable parameters.
Examine this file and mak any changes that you requireFor example, if
LINEWRAPIs set to 0, then lines longer than 80 characters will be truncated; with
nonzero alues thg will be wrapped.If you want more information than is proed
in this file, xéamine the system sources themss)\for @ample, usingyrepto locate
the releant files. In ary event, be surdMACHINE is set toMACINTOSH

8.4.2. Compilingthe Pieces

Once eerything has been set up, actually compiling the pieces is éasy go
to thekernel directory on you hard disk (or mount tkernel diskette and go to it).
Then type:

make —n

to see whamale is planning to do.Normally it will list a sequence of compilations
to be done.If it complains that it cannot find some file, please install the file.
Now do it for real by typing:

make

The kernel will be compiled.
Now go to fs. If you are using disktes, first unmount the one containing the
kernel sources and mount the one containing the file system sottoedype

make —n
to see if gerything is all right, follaved by
make

to do the work. Ina smilar way, go to mmand useanale to produce thenmfile.

126 RECOMPILING MINIX CHAP 8

Finally, go to toolsand type
make

to produceanit. Check to see that all of themvsalbeen madelf one is missing, use
male to produce it.

8.4.3. TheBoot Sequence

In this section we will describe wathe four independently compiled and etk
programskernel, fs, mm and init, are used in conjunction with the boot application
to bootMINIX on the Macintosh.

Basically the boot application does the fallmg:

1. It requests some memory from the the Macintosh operating system.
This memory will be used to load tiveNIX kernel programs. Aything
remaining after these are loaded will be used byihex kernel to run
MINIX programs.

2. Thekernel program is loaded first. The boot application reads this pro-
gram from thaesouice fork (Macintosh resources argptained belw)
of the boot application, loads it into memory and relocates it so that the
addresses that theetnel use correspond correctly to the place where it
has been loaded in memory

3. Similarly mmis loaded, follaved byfs andinit. As each program is
loaded, the boot application reports where in memory it has been loaded
and hov much memory has been consumedt(iend data are sthm
separatelyand each is padded to a multiple of 256 bytes).

After having loaded the four files, the boot application jumps to the first instruc-
tion of the lernel, where xecution proceeds normallySince the lernel needs to
know where each program (mm, fs, and init) has been loaded, the boot application
passes this information on the stack.

8.4.4. TheBoot Application

The boot application is a retaély small program that isxecuted by the Macin-
tosh operating systenivery application that isxecutable by the Macintosh operat-
ing system is composed of a numberesiouices. Each of these resources describes
some aspect of the applicatioRor instance, CODE resources are compiled source
code, MENU resources describe menu bars, ICON resources describe the icon of the
program when it is displayed on the desktop, and so on. The Macintosh operating
system contains mgrsystem calls to support the use and manipulation of resources.
There are man mary different types of resource3.he idea behind all of thisag

SEC. 84 REBUILDING MINIX ON THE MA CINTOSH 127

that the ®ecutable code of the application could beodted from the user intexte
aspects, and the application could be easily customized feredit countries and
languages.

The boot application, then, consists of threegmies of resources: the code for
the boot application itself (CODE resources), a resource for each oérinel bro-
grams (BOQ resources), and other peripheral resourdesluded in this latter cat-
egory are things lik the picture that is displayed when you select the "About
MINIX" menu item (the PICT resource). Note that the structure of resource files is
not even dightly related to the structure of a nornNIX executable, and thecan-
not be &ecuted by thavINIX operating system.

8.4.5. Buildingand Testing a New Boot Aplication

Once you understand resources, the procesaii@dfing the boot application
becomes rather straight foavd. Firstthe boot code itself is compiled, then each of
the kernel programs are compiled, and then a utility program catteder com-
poses the actual boot application from atual description of the resources.
Rmaler is called a resource compiler; it is @y simple minded one and only kn®
how to build a resource file from a limited number of resource typ#st Bhould be
sufficient for most needs.

To huild a nev boot application, maka ©py of the BOO'.00 dislette and set it
aside. Nav boot male the nev kernel programs if you lva rot already done so, go
to the tools directory and type:

make boot

This will compile the code of boot program (if necessary), and then it will run the
rmalker utility. The rmaler utility reads the resource descriptions frboot.r and
builds the n&v boot application on the diskte (replacing the old one if necessaoy
only use a COPY of BODO00). Whenthe male is finished, kill ay background
processes, dosyng and reboot the system with thewdiskette. Afterlogging in,

go to thetestdirectory and type:

run

to run all the test programs, assuming/thavealready been compiledf they have
not been, log in as root and type:

make all

If you do not hae a tard disk, the ab@ procedure has to be modified slightly
You will have © copy the kernel, fs, and mmfiles to thetools directory and change
boot.rto reflect the change.

128 RECOMPILING MINIX CHAP 8

8.4.6. InstallingNew Device Drivers
Fadlow the procedure outlined in the IBM PC section.
8.4.7. Toubleshooting

If you modify the system, there isnays the possibility that you will introduce
an error In this section, we will discuss some of the more common problems and
how to track them dan.

To dart with, if something is acting strange, turn the computerwdit about
one minute, and reboot from scratclihis gets werything into a knan state.
Rebooting with CTRL-AI-DEL may leae the system in a peculiar state, which
may be the cause of the trouble.

If a message ik

Booting MINIX 1.5

does not appear on the screen after thveepon self-tests hae completed (on the
IBM PC), something is wrong with the boot blockhe boot block prints this mes-
sage by calling the BIOSMake a dump of the first block of the boot distte and
examine it by hand to see if it contains the proper program.

If the above message appeargjtithe initial menu does not, it is &k thatmenu
is not being started, since the first thmgnudoes is print the menuCheck the last
6 bytes of the boot block to see if thegagent and déet put there byuild corre-
spond to the address at whitlenuis located (right afteinit).

If the menu appearsubthe system does not respond to the equal sigux is
probably being startedubcrashing during initializationOne possible cause is the
introduction of print statements into therkel. Havever, it is not permitted to dis-
play arything until after the terminal task has run to initialize itsd¥e careful
about where you put the print statements.

If the screen has been cleared and the messagg the sizes has appeared, the
kernel has initialized itself, the memory manager has run and ddloa&iting for a
message, and the file system has started runiing. message is printed as soon as
the file system has read the suplerck of the root file system.

If the system appears to hang before or after reading the root file system, some
help can be obtained by hitting the F1 or F2 functieysKunless the dump routines
have keen remwed). By hitting F1 twice a f& seconds apart and noting the times
in the displayit may be possible to see which processes are runtinfpr exam-
ple, init is unable to fork, for whater reason, or cannot opéatc/ttys or cannot
execute/bin/shor /bin/login, the system will hang,ut process 2ifit) may continue
to use CPUyxles. Ifthe F1 display shws that process 2 is constantly running, it is
a good bet thatnit is unable to mak a ystem call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message

SEC. 84 REBUILDING MINIX ON THE MA CINTOSH 129

and each outgoing replyRecompile and test the system using the patput as a
guide.

8.5. REBUILDING MINIX ON THE SUN SP ARCSTATION 1

It is possible to ralild MINIX-SPARC on ary SparcStation with at least 4 MB of
main memory and a hard disk. Some hints avengio retuild MINIX-SPARC on a
SparcStation with only a diske drve and at least 8 MB of RAM.

8.5.1. Configuringthe System

In order to rehild MINIX-SPARC you must first prepare your system/hat you
must do depends on your systethyou have a tard disk, you should install all the
sources and binaries on your disk.

If you want to reconfigure the system you should firsaneine the files
include/minix/confidh andinclude/minix/boot.h These contain a number of tunable
system parameterd-or instance if you &ep your root partition ordev/sd15 but
you do not vant to load this partition into the RAM disk upon startup, you could
change the line

#define DROOTDEV (DEV_RAM + 0)
in include/minix/boot.lnto
#define DROOTDEV (DEV_HDO + 15)

If you do not vant to cop the root partition, bt you want to lkeep a RAM disk, you
should modify the alue of the constam@RAMSIZEin include/minix/boot.fas well.

The file configh contains some useettable parameters. Examine this file and
make the changes you require. The mad@dCHINE should beSUN_4on the
SparcStation. du should change theale of NR_BJUFS to a bigger alue, like
1536, lut only if your SparcStation has at least 8 MB of main menidrg file sys-
tem process gets only a maximum of 1792 KB of memiaryhich the FS code,
data and stack should fit. So do not méde FS hffer cache too big or else the sys-
tem will crash.

8.5.2. Relilding MINIX Using a Hard Disk

Rehuilding MINIX is fairly simple when you hee a fard disk. Assuming that
you have installed the sources iasr/sic, and that there is enough free space on your
hard disk to accommodate all object files and results, type:

cd /usr/src/kernel
make

130 RECOMPILING MINIX CHAP 8

cd /usr/src/mm
make

cd /usr/src/fs
make

cd /usr/src/tools
make

If disk space is tight you can ren®dl .o files after each mak If eveything suc-
ceeds, you will hee a fle calledminix.imgin /usr/sic/tools You can create a we
boot dislette by inserting an emptfjormatted disk into the disk &g and issuing
the command:

cp /usr/src/tools/minix.img /dev/rfd0

If the dislette was not yet formatted, you vea o fdformatit first. If you want to
bootMINIX from hard disk, you should cgphe MINIX-SPARC boot image to a pre-
viously prepared hard disk partitioo copy the image, construct a shell sript con-
taining the follaving line:

dd if=/usr/src/tools/minix.img of=/dev/sdn skip=1 seek=1 conv=sync

wheren is the ASCII representation of the minor partition numbeérs wise to
triple check this command when youvhayped it, as it writes on the \gin hard
disk partition without checking whether thereasvalready avINIX or SunOS
filesystem on it. The point of putting it in a shell script is that you camme it
carefully after typing it.If you just type it in and maka mstake, you can wipe out
your hard disk.After you are covinced that it is correctxecute the shell script.

Now you can logout and reboot the system to try yow beot disk. It is
advised to generate awmdile /etc/psdatabasevhich is used by thpsprogram. The
command:

ps -U

will make this file for you. Do not faget to cop /etc/psdatabast® your root disk.
8.5.3. Relilding MINIX Using a Floppy Dislette Drive

It is possible to relild MINIX-SPARC on a SparcStation with at least 8 MB of
main memory bt without a hard disk. This sectiorvgs hints on hav to create an
ervironment to rebild MINIX without using a hard diskubis not quite xhaustve
in explaining everything step-by-step. When youawt to relild MINIX with only a
diskette, you hee 0 be aeatve.

To aeate the enronment, you should format four 1.44M dettes. The first
diskette will be used for a big 4MB root filesystem, which should contain the normal
root filesystem files plus the C compijleditor, include files, etc. The second will be

SEC. 85 REBUILDING MINIX ON THE SUN SFARCSTATION 1 131

used for the &rnel, the third for the memory managtre file system and tools
sources. The last diske will be the n& boot dislette. You should create aGOT
file system of 4 MB. A 3MB filesystem should do as well that is the minimum.
This is hav you should create the@OT file system. First rebodINIX . Then log
in asroot and type:

for i in ar cpdir df rmdir mkfs fdformat chmod compress
do cp /usr/bin/$i /bin; done
/etc/umount /dev/fd0

Next, insert a n& diskette, format it, create MINIX file system on it and cgpthe
ROQOT file system to it:

fdformat

mkfs —t /dev/fd0 4096
/etc/mount /dev/fd0 /user
cpdir —msv [/ /user
/etc/umount /dev/fd0

RebootMINIX again with the ner ROOT diskette. © compile programs, you will
needcc, as, Id, /usr/includecpp, cclandlibc.a. You'll probably also want a pro-
gram editor andnale.

/etc/umount /dev/fd0 # unmount the /usr/disk
/etc/mount /dev/fdO /user # insert 04.USR2

cp /user/bin/elvis /bin/vi # copy elvis (or mined)

cp /user/bin/make /bin

/etc/umount /dev/fd0

/etc/mount /dev/fdO /user # insert 05.CSYS

cp /user/bin/x /bin # get cc, as and Id

cd /bin; compress —-d x.Z; rm x.Z

mkdir /usr/lib; cd /usr/lib # create the lib directory

cp /userl/lib/[cehl]x .

compress —d %.Z; rm %.Z

cpdir /user/include /usrfinclude; cd /usr/include
compress —d %.Z; rm %.Z; ar X %.a;, rm x.a

(cd minix; compress —d x.Z; rm x.Z; ar X *.a, rm x.a)
(cd sys; compress —d x.Z; rm x.Z; ar X %.a@;, rm x.a)
mkdir /usr/tmp # vi and the C compiler want /usr/tmp
mkdir /usr/src

You could copy your current ram dece to the root disktte, lut you should mak
sure, that it fits (i.e., no more than 1440 used blockg@rant check this withdf).
Now, you need to copand unpack thedernel sources:

/etc/umount /dev/fdO # unmount 05.CSYS

132 RECOMPILING MINIX CHAP. 8

/etc/mount /dev/fdO /user # insert 07.SRC2
cp /user/src/kernel/x /tmp # temporarily store kernel sources in tmp

/etc/lumount /dev/fd0 # unmount diskette and insert empty diskette
fdformat # format the diskette

mkfs /dev/fd0 1440 # create an empty filesystem

/etc/mount /dev/fdO /usr/src

mkdir /usr/src/kernel # create kernel directory on the diskette

cp /tmp/x lusr/src/kernel # copy the kernel files to it

cd /usr/src/kernel; compress —d x.Z; rm x.Z; ar X %.@; rm x.a
cd /; /etc/umount /dev/fdO # remove the diskette

rm /tmp/x # and the temporary files

The same needs to be done for the MM/FS/toolsttisk

/etc/mount /dev/fdO /user # insert 07.SRC2
for i in mm fs tools; do cpdir —mv /user/src/$i /tmp/$i; done

/etc/umount /dev/fd0 # unmount 07.SRC2 and insert empty diskette
fdformat # format the diskette
mkfs /dev/fd0 1440 # create an empty filesystem

/etc/mount /dev/fdO /usr/src

for i in mm fs tools

do cpdir —mv /tmp/$i /usr/src/$i; cd /usr/src/Si

compress —d %.Z; rm %.Z; ar X %.a@; rm x.a; rm —rf /tmp/$i
done

mkdir /usr/src/kernel

/etc/umount /dev/fd0 # remove the diskette

Now, you can rebild the MINIX-SPARC kernel in three phases. First recompile the
kernel, then recompile MM and FS and merthem producing a webootable
MINIX image and finally copthis image to a diskte. D dart, insert thekernel
diskette, you just created:

/etc/mount /dev/fd0 /usr/src # mount the kernel diskette
cd /usr/src/kernel; make
cp /usr/src/kernel/kernel.out /tmp

The last command copies the latklkernel image to the RAM d&&e. Nov unmount
the kernel diskette, replace it with the diske, containing thenm fs andtools and
mount it. Compile the sources:

/etc/umount /dev/fd0 # unmount the kernel diskette
/etc/mount /dev/fdO /usr/src # mount the mm/fs/tools diskette
cd /usr/src/mm; make # make mm.out

cd /usr/src/fs; make # make fs.out

cp /tmp/kernel.out /usr/src/kernel
cd /usr/src/tools

SEC. 85 REBUILDING MINIX ON THE SUN SFARCSTATION 1 133

make # make minix.img
cp minix.img /tmp

cd /tmp

/etc/lumount /dev/fd0

Remoare the dislette and insert an empfprmatted disktte. Cop the MINIX image
to it:

cp minix.img /dev/rfd0

If space is getting scarce, remeoss much temporary andd' files as necessary
8.5.4. InstallingNew Device Drivers

Once you hee successfully reached this point, you willmdoe ale to modify
MINIX . In general, if a modification only f&fcts, saythe file system, you will not
have o recompile the memory manager @riel. Ifa nmodification afects ay of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is concevable that your modification has increased the size of some file so
much that the compiler complains about lit.this occurs, try to determine which
pass it is using thev flag tocc, and then gre that pass more memory usiognem

One common modification is addingm&O devices and dxiers. To add a nev
I/O device toMINIX, it is necessary to write a dwr for it. The nev driver should
use the same message irded as thexasting ones.The drver should be put in the
directory kernel and Makefile should be updated. In addition, the entry point of the
new task must be added to the list contained in the aaslf] in kernel/tablec.

Two changes are also required in ther/include/minixdirectory In const.h the
constantNR_TASKShas to be increased by 1, and thevtask has to be gn a
name incom.h

A new ecial file will have 10 be aeated for the dver. This can be done with
mknod

To tell the file system which task is handling thevrspecial file, a line has to be
added to the arragmay] in fs/tablec.

Writing device drivers for MINIX-SPARC is somevhat more dificult than writing
device drivers for the PC or Atari ersions ofMINIX . The first problem is that the
internal hardwre of the SparcStation is not well document8dcondly the Sparc-
Station 1, 1+ and IPC use an MMU with codgeand a cacheA context is a trans-
lation table of virtual to pysical addresses. Of the 8adable conte&ts, MINIX-
SFARC uses only the first 3 contis. TheMINIX memory manager runs at virtual
address 0 in comte 0, the file system at virtual address 0 in cenfeand the cur
rently (or last) running user process is mapped at virtual address 0 intcaniée
kernel is mapped irall contets in high virtual memory at address 0xE0004000.
When a deice driver wants to access data in the memory of another process, it has
to map that memory in itsnm address space. But by double mapping of the same

134 RECOMPILING MINIX CHAP 8

physical memorythe cache of the SparcStation could present probléinerefore,

a device driver should carefully flush the cache. If yowamt to write a déce drver,
study the present diee drivers closely until you understand themThe file
lusr/sic/kernel/const.lgives information on the Sparc and SparcStation specific con-
stants.

8.5.5. RecompilingCommands and Libraries

The procedure for recompiling the commands and the library is similar to the
one for recompiling thedenel.

A major difference between recompiling commands and recompilingeheek
is that each command (and each library module) can be recompiled independently of
all the others, so that less RAM disk is needed.

In order to runmale in the commands directory you shouldrlggmale 60000
bytes of memory by issuing the command:

chmem =60000 /usr/bin/make

A few ommmand source files are so big that the compiler complains abdiit it.
this occurs, try to determine which pass it is using-thélag tocc, and then gre
that pass more memory usirgpmem Especially the GNU C-compiler proper
(/usr/lib/cc)) is known to require a gp of 1200000 bytes to compile some programs.
When compiling the libraries via

cc —O —-D_MINIX -D _POSIX_SOURCE —c «.c

the dispatcherc, will need more memory
8.5.6. RecompilingGNU Sources

Rehuilding the GNU programs is sombat diferent from rehilding the ordi-
naryMINIX commands. This is mainly due to the size and the form of distiibof
the GNU sources.

Some gcc andag source files are so big, thasr/lib/ccland/usr/bin/asneed
more memory space to compile/assemble them. When compiling gas,at'gbest
to temporarily increase theag size oflusr/lib/cc1to 1600000, and theag size of
/usr/bin/asto 800000. This will be enough to compile the most demanding sources.
To link the assembler object filefsisr/bin/ld needs a slightly biggerag of 150000
bytes. You should restore theags to their original sizes after yga'finished recom-
piling gcc and gs to preser/memory space.

Distributed are original GNU source files, stored in $stup.dirdirectories, and
the changes made to some source filegliff files in theSetup.fixdirectories. There
are three GNU source directoriggc gasandbinutils in the/usr/sic/gnudirectory

To compile, for instancegcc you should hee installed the GNU sources via
lusr/setup. usr You also should ha ootedMINIX-SPARC with a root file system,

SEC. 85 REBUILDING MINIX ON THE SUN SFARCSTATION 1 135

big enough to hold the temporary files frgach. The distritution 02.ROOT is ot
big enough. Use a root of at least 768 KB, created asrsho Step 4 of section
6.3.4. Log in and type:

chmem =1600000 /ustr/lib/ccl
chmem =800000 /usr/bin/as
cd /usr/src/gnu/gcc

make

Now, the MINIX-SPARC sources of the GNU C compiler ardracted and compiled,
which may tak a while, even on a fast computer li& the SparcStation. The wecc,

cpp and ccl can be tested and copied /tesr/bin and /usr/lib if they’re all right.
Afterwards, you shouldhmem cclandasto their original @p sizes. If you do not,
both of them will allocate an enormous amount of memory when run, which is
almost neer used.

