
8

RECOMPILING MINIX

This chapter is intended for those readers who wish to modifyMINIX or its utili-
ties. Inthe following pages we will tell what the various files do and how the pieces
are put together to form the whole.It should be emphasized that if you simply
intend to useMINIX as distributed, then you do not have to recompile the system and
you do not have to read this chapter. Howev er, if you want to make changes to the
core of the operating system itself, for example, to add a device driver for a streamer
tape, then you should read this chapter.

8.1. REBUILDING MINIX ON THE IBM PC

Although this section is specifically for IBM PC users, it should also be read
carefully by everyone interested in recompilingMINIX . Most of what is said here
applies to all versions ofMINIX . The sections about other processors mostly discuss
the differences between recompilingMINIX on an IBM PC and on another system.

TheMINIX sources are contained in the following directories, normally all subdi-
rectories of/usr/src except forincludewhich goes in/usr/include:

center allbox; l l. Dir ectory Contents include The headers used by the

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 113

commands (has two subdirectories) kernel Process,message, and I/O device handling
mm Thememory manager fs The file system toolsMiscellaneous tools and
utilities test Test programs lib Libraries (has several subdirectories)
commands Theutility programs (has many subdirectories)

Some of the directories contain subdirectories.If you are working on a hard disk, be
sure that all these directories have been set up, and all files copied there from the dis-
tribution diskettes and decompressed and dearchived. If you do not have a hard disk,
format and make empty file systems on five diskettes. Onthe first one, make a
directorykernel and copy all the kernel files to it.In a similar way, prepare diskettes
for fs, mm, tools, and testas well. If you do not have a hard disk, there are still three
ways you can recompile the system.First, if you have two diskette drives, use drive
0 to hold the root file system, including the compiler, /usr/lib and /usr/include.
Diskettes with programs to be compiled are mounted on drive 1.

Second, if you have a sufficiently large RAM disk (at least 512K), you can put
the root file system there, along with the compiler, /usr/lib and/usr/include.

Third, if you have no hard disk, one diskette drive and insufficient memory for a
512K RAM disk, you should have at least a 1.2M diskette drive in which you can
put the root file system, although in a pinch a 720K diskette might work with a lot of
shoehorning. Ifyou use this approach, each of the five diskettes made above must
contain enough of/usr/bin, /usr/lib, and /usr/includeto allow compilation of the ker-
nel, file system, or whatever other files are on that disk.With only 640K RAM and a
single 360K diskette, it is not possible to recompile the system.Expanded memory
(LIM standard) is not supported and cannot be used as a RAM disk.

As a test to see if everything is set up properly, type in, compile, and run the fol-
lowing program:

#include <limits.h>
main()
{

pr intf(′′PATH MAX = %d n′′, PATH MAX);
}

It should print out the value 255 forPA TH MAX. If i t fails to compile, be sure that
the file/usr/include/limits.his installed and readable.

8.1.1. Configuringthe System

The file /usr/include/minix/config.h contains some user-settable parameters.
Examine this file and make any changes that you require.For example, if
LINEWRAPis set to 0, then lines longer than 80 characters will be truncated; with
nonzero values they will be wrapped.If you want more information than is provided
in this file, examine the system sources themselves, for example, usinggrep to locate

114 RECOMPILING MINIX CHAP. 8

the relevant files. In any event, be sureMACHINE is set toIBM PC (or one of the
68000 types if you have one). If you have an 80386-based processor, useIBM PC,
not IBM 386, as that is intended for a future 32-bit version ofMINIX , and will not
work at present.The current 16-bit version works fine on 80386s, but initializes all
segment descriptors to 16-bit mode.

The kernel directory contains a shell scriptconfig. Before starting to compile the
system, examine this file using your favorite editor. You will see that it begins with
a casestatement that switches on the first argument. Eachof the clauses defines
some variables that are used later. The idea here is that you need files calledmpx.x,
klib.x, and wini.c. For each of these there are several candidates.Which one you
use depends on the your system configuration.

If you have a PC/AT with a PC/AT hard disk controller, type:

config at

to set up the files.On the other, if you have a PC/XT (8088), usext instead ofat as
the argument. For a PS/2, useps. If none of these produce working systems, run
configagain usingbiosas the argument this time.If you happen to have a PC with a
PC/AT disk controller or a PC/AT with an XT disk controller, you will have to build
the configuration by hand.

8.1.2. Compilingthe Pieces

Once everything has been set up, actually compiling the pieces is easy. First go
to thekernel directory on you hard disk (or mount thekernel diskette and go to it).
Then type:

make –n

to see whatmake is planning to do.Normally it will list a sequence of compilations
to be done.If it complains that it cannot find some file, please install the file.

Now do it for real by typing:

make

The kernel will be compiled.On a 33 MHz 80386 with a fast hard disk, it will take
under 3 minutes.On a 4.77 MHz 8088 with two diskette drives it will take rather
longer. When it is finished, you will be left with a collection of.s files, all of which
can now be removed if space is tight, and a filekernel, which will be needed.

If you have a small system, it is possible that there will not be enough room for
makeand the C compiler simultaneously. In that case type:

make –n >scr ipt
sh script

If even that fails due to lack of memory, examinescript and type in all the com-
mands by hand, one at a time.

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 115

Now go to fs. If you are using diskettes, first unmount the one containing the
kernel sources and mount the one containing the file system sources.Now type

make –n

to see if everything is all right, followed by:

make

to do the work. Again here, the.s can be removed, but the filefs must be kept. Ina
similar way, go to mmand usemake to produce themmfile.

Finally, go to toolsand type:

make

to produceinit, bootblok, build, and menu. (Actually a binary version ofbootblokis
provided since it is so short, but making a new one does not take very long.) Check
to see that all of them have been made.If one is missing, usemake to produce it, for
example:

make init

8.1.3. Buildingthe Boot Diskette

In this section we will describe how the six independently compiled and linked
programs,kernel, fs, mm, init, bootblok, and menuare forged together to make the
boot diskette usingbuild.

The boot diskette contains the six programs mentioned above, in the order given.
The boot block occupies the first 512 bytes on the disk.When the computer is
turned on, the ROM gets control and tries to read the boot block from drive 0 into
memory (at address 0x7C00 on the IBM PC).If this read succeeds, the ROM jumps
to the boot block to begin the load.

TheMINIX boot program first copies itself to an address just below 256K, to get
itself out of the way. Then it calls the BIOS repeatedly to load cylinders of data into
low core. Thisdata is the bootable image of the operating system, followed directly
by menu(on the IBM PC).When the loading is finished, the boot program jumps to
the start ofmenu, which then displays the initial menu.If the user types an equal
sign,menujumps to an address in low core to startMINIX .

The boot diskette is generated bytools/build. It takes the six programs listed
above and concatenates them in a special way. The first 512 bytes of the boot
diskette come frombootblok. If need be, some zero bytes are added to padbootblok
out to 512. Bootblok does not have a header, and neither does the boot diskette
because when the ROM loads the boot block to address 0x7C00, it expects the first
byte to be the start of the first instruction.

At position 512, the boot diskette contains the kernel, again without a header.
Byte 512 of the boot diskette will be placed at memory address 1536 by the boot

116 RECOMPILING MINIX CHAP. 8

program, and will be executed as the firstMINIX instruction whenmenuterminates.
After the kernel comesmm, fs, init, and menu, each padded out to a multiple of 256
bytes so that the next one begins at a click boundary.

Each of the programs may be compiled either with or without separate I and D
space (on the IBM PC; the 68000 versions do not have this feature).The two mod-
els are different, but build explicitly checks to see which model each program uses
and handles it.In short, whatbuild does is read six files, stripping the headers off
the last five of them, and concatenate them onto the output, rounding the first one up
to 512 bytes and the rest up to a multiple of 16 bytes.

After concatenating the six files,build makes three patches to the output.

1. Thelast 4 words of the boot block are set to the number of cylinders to
load, and the DS, PC, and CS values to use for runningmenu. The boot
program needs this information so that it can jump tomenuafter it has
finished loading.Without this information, the boot program would not
know where to jump.

2. Build loads the first 8 words of the kernel’s data segment with the CS
and DS segment register values forkernel, mm, fs, and init. Without
this information, the kernel could not run these programs when the time
came: it would not know where they were. It also sets word 4 of the
kernel’s text segment to the DS value needed to run the kernel.

3. Theorigin and size ofinit are inserted at address 4 of the file system’s
data space.The file system needs this information to know where to put
the RAM disk, which begins just after the end ofinit, exactly overwrit-
ing the start ofmenu.

To hav ebuild actually construct the new boot diskette, insert a blank, formatted
diskette in drive 0 and type:

make image

It will run, build the boot diskette, and display the sizes of the pieces on the screen.
When it is finished, kill any background processes, do async, and reboot the system.
After logging in, go thetestdirectory and type:

run

to run all the test programs, assuming they hav ealready been compiled.If they hav e
not been, log in as root and type:

make all

If you do not have a hard disk, the above procedure has to be modified slightly.
You will have to copy the kernel, fs, and mmfiles to thetools directory and change
Makefileaccordingly.

SEC. 8.1 REBUILDING MINIX ON THE IBM PC 117

8.1.4. InstallingNew Device Drivers

Once you have successfully reached this point, you will now be able to modify
MINIX . In general, if a modification only affects, say, the file system, you will not
have to recompile the memory manager or kernel. If a modification affects any of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is conceivable that your modification has increased the size of some file so
much that the compiler complains about it.If this occurs, try to determine which
pass it is using the–v flag to cc, and then give that pass more memory using the
chmemprogram.

One common modification is adding new I/O devices and drivers. To add a new
I/O device to MINIX , it is necessary to write a driver for it. The new driver should
use the same message interface as the existing ones.The driver should be put in the
directorykernel andMakefile updated. Inaddition, the entry point of the new task
must be added to the list contained in the arraytaskin kernel/table.c.

Tw o changes are also required in/usr/include/minix. In const.h, the constant
NR TASKShas to be increased by 1, and the new task has to be given a name in
com.h.

A new special file will have to be created for the driver usingmknod.
To tell the file system which task is handling the new special file, a line has to be

added to the arraydmapin fs/table.c.

8.1.5. Troubleshooting

If you modify the system, there is always the possibility that you will introduce
an error. In this section, we will discuss some of the more common problems and
how to track them down.

To start with, if something is acting strange, turn the computer off, wait about
one minute, and reboot from scratch.This gets everything into a known state.
Rebooting with CTRL-ALT-DEL may leave the system in a peculiar state, which
may be the cause of the trouble.

If a message like

Booting MINIX 1.5

does not appear on the screen after the power-on self-tests have completed (on the
IBM PC), something is wrong with the boot block.The boot block prints this mes-
sage by calling the BIOS.Make a dump of the first block of the boot diskette and
examine it by hand to see if it contains the proper program.

If the above message appears, but the initial menu does not, it is likely thatmenu
is not being started, since the first thingmenudoes is print the menu.Check the last
6 bytes of the boot block to see if the segment and offset put there bybuild corre-
spond to the address at whichmenuis located (right afterinit).

If the menu appears, but the system does not respond to the equal sign,MINIX is

118 RECOMPILING MINIX CHAP. 8

probably being started, but crashing during initialization.One possible cause is the
introduction of print statements into the kernel. However, it is not permitted to dis-
play anything until after the terminal task has run to initialize itself.Be careful
about where you put the print statements.

If the screen has been cleared and the message giving the sizes has appeared, the
kernel has initialized itself, the memory manager has run and blocked waiting for a
message, and the file system has started running.This message is printed as soon as
the file system has read the super-block of the root file system.

If the system appears to hang before or after reading the root file system, some
help can be obtained by hitting the F1 or F2 function keys (unless the dump routines
have been removed). By hitting F1 twice a few seconds apart and noting the times
in the display, it may be possible to see which processes are running.If, for exam-
ple, init is unable to fork, for whatever reason, or cannot open/etc/ttys, or cannot
execute/bin/shor /bin/login, the system will hang, but process 2 (init) may continue
to use CPU cycles. If the F1 display shows that process 2 is constantly running, it is
a good bet thatinit is unable to make a system call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message
and each outgoing reply. Recompile and test the system with the new output.

8.2. REBUILDING MINIX ON THE A TARI ST

It is possible to rebuild MINIX-ST on any system with at least 1 MB of memory
and a 720K disk drive. Howev er such a configuration is the bare minimum. Addi-
tional hardware greatly speeds up the process.

8.2.1. Configuringthe System

In order to rebuild MINIX-ST you must first prepare your system.What you
must do depends on your system.If you have a hard disk, you should install all the
sources and binaries on your disk.Chapter 3 describes how to achieve this.

If you do not have a hard disk, you should create 4 720K disks.These disks
should contain the unpacked mm, fs, kernel and tools sources respectively. Chapter 3
describes how to unpack the sources.

If you want to reconfigure the system you should examine the files
include/minix/config.h and include/minix/boot.h. These files are found on 06.ACK,
and contain a number of tunable system parameters.For instance if you keep your
root partition on/dev/hd3, but you do not want to load this partition into the RAM
disk upon startup, you could change the line

#define DROOTDEV (DEV RAM + 0)

in include/minix/boot.hinto

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 119

#define DROOTDEV (DEV HD0 + 3)

If you do not want to copy the root partition, but you want to keep a RAM disk, you
should modify the value of the constantDRAMSIZEin include/minix/boot.has well.

If you have a system with a United Kingdom or German keyboard, it is recom-
mended to go to the directory with the kernel sources, and substitute in the file
Makefile, the stringus in the line:

KEYMAP = keymap.us.h

by uk or ge respectively. If you do this you will generateMINIX for use with your
native keyboard instead of a US one.By doing so, you do not need to runfixkeys on
your boot disk any more.

If you have a system with a real time clock on the disk controller it is recom-
mended to go to the directory with the kernel sources, and modify the first few lines
of the fileMakefileso that they read:

CLOCKS = –DCLOCKS
#CLOCKS =

8.2.2. Rebuilding MINIX Using a Hard Disk

Rebuilding MINIX is fairly simple when you have a hard disk. Assuming that you
have installed the sources in/usr/src, and that there is enough free space on your
hard disk to accommodate all object files and results, type:

chmem =110000 /usr/lib/cem
cd /usr/src/mm
make
cd /usr/src/fs
make
cd /usr/src/ker nel
make
cd /usr/src/tools
make

If disk space is tight you can remove all .o files after each make. If ev erything suc-
ceeds, you will have a file calledminix.imgin /usr/src/tools. You can either write this
file to TOS using thetoswritecommand, or create a new boot diskette by inserting an
empty, formatted disk into the disk drive and issuing the command:

cp /usr/src/tools/minix.img /dev/fd0

Now you can logout and reboot the system to try your new boot disk. If required
run theTOS programfixkeys to modify the keyboard tables to reflect your hardware.
It is advised to generate a new file /etc/psdatabase, which is used by thepsprogram.

120 RECOMPILING MINIX CHAP. 8

The command:

ps –U

will make this file for you. Do not forget to copy /etc/psdatabaseto your root disk!

8.2.3. Rebuilding MINIX Using 1 MB or T wo 720K Disk Drives

If your have more than 1 MB of memory, your should create a huge RAM disk.
The size of the RAM disk is not critical. A RAM disk of 1 MB will do, but more
does not harm you.In addition to the usual contents of the RAM disk, you should
also copy disk 06.ACK onto the RAM disk. Take care that the various compiler
passes are found in/usr/lib or /lib.

If you have two disk drives you should use one drive to hold the 06.ACK disk.
This disk should be mounted on/usr. The other drive will be used to hold the disks
with the sources. You will also need a RAM disk which has at least 150 KB free.

In both cases after setting up, execute the following steps:

cd /
chmem =110000 /usr/lib/cem

Insert 03.USR1 into the disk drive and type:

mount /dev/dd0 /user
cp /user/bin/dd /bin/dd
cp /user/bin/make /bin/make
umount /dev/dd0

Insert the disk with the mm sources into the disk drive and type:

mount /dev/dd0 /user
cd /user/src/mm
make
cp mm.mix /tmp/mm.mix
cd /
umount /dev/dd0

Insert the disk with the tools sources into the disk drive and type:

mount /dev/dd0 /user
mkdir /user/src/mm
cp /tmp/mm.mix /user/src/mm/mm.mix
rm /tmp/mm.mix
umount /dev/dd0

Insert the disk with the fs sources into the disk drive and type:

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 121

mount /dev/dd0 /user
cd /user/src/fs
make
cp fs.mix /tmp/fs.mix
cd /
umount /dev/dd0

Insert the disk with the tools sources into the disk drive and type:

mount /dev/dd0 /user
mkdir /user/src/fs
cp /tmp/fs.mix /user/src/fs/fs.mix
rm /tmp/fs.mix
umount /dev/dd0

Insert the disk with the kernel sources into the disk drive and type:

mount /dev/dd0 /user
cd /user/src/ker nel
make
cp ker nel.mix /tmp/ker nel.mix
cd /
umount /dev/dd0

Insert the disk with the tools sources into the disk drive and type:

mount /dev/dd0 /user
mkdir /user/src/ker nel
cp /tmp/ker nel.mix /user/src/ker nel/ker nel.mix
rm /tmp/ker nel.mix
cd /user/src/tools
make
cp minix.img /tmp/minix.img
cd /
umount /dev/dd0

If everything succeeds, you will have a file calledminix.img in /tmp. You can
either write this file toTOS using thetoswrite command, or create a new boot
diskette by inserting a blank, formatted diskette into the disk drive and then typing:

cp /tmp/minix.img /dev/fd0

Now you can log out and reboot the system to try your new boot disk. If
required run theTOS programfixkeys to modify the keyboard tables to reflect your
hardware. It is advised to generate a new file /etc/psdatabase, which is used by the
psprogram. The command:

ps –U

122 RECOMPILING MINIX CHAP. 8

will make this file for you. Do not forget to copy /etc/psdatabaseto your root disk!
Refer to Sec. 3.12 if your new boot disk does not function properly.

8.2.4. Rebuilding MINIX Using 1 MB and a 720K Disk Dri ve

Rebuilding MINIX with only one 720K disk drive and 1 MB of memory is some-
what more complicated.Therefore it is highly recommended to study this subsec-
tion completely before even attempting to rebuild MINIX . First you have to prepare
a compiler disk. This is done by making a copy of 06.ACK. Remove all but the fol-
lowing files from your newly created compiler disk:bin/as, bin/cc, lib/cem, lib/cg,
lib/crtso.o, lib/cv, lib/end.o, lib/head.o, lib/ld, lib/libc.a, lib/opt, include/*,(all files
in includeand its subdirectories) Now mount the USR1 disk and copy the following
programs to/tmp: make, mined, dd, cpdir. Then mount your compiler disk, and
copy these programs onto the bin directory of the compiler disk. After doing so you
should remove them from/tmp.

Make a set of source disks as specified in the previous subsection.Reboot the
system with a root disk which contains a 400 KB RAM disk.Log in as root.
Unmount the usr filesystem, and mount your compiler disk on /usr.

Now we are ready to start the compilation process.By and large, the next steps
are similar to the one from the previous subsection.However, since you have only
one drive, which holds the compiler disk, the sources are going to be kept in the
RAM disk. During the remainder of this subsection we will assume that your
sources are kept in/tmp/src.

Whenever it is stated that you should insert a disk with sources you should
unmount your compiler disk. Mount the disk which contained the sources on which
you were working. Then copy the contents of/usr/src back to the disk where the
sources came from. This is most easily done through the command:

cpdir –msv /tmp/src /usr/src

Now erase your source directory by issuing the command:

cd /tmp/src; rm –rf *
Unmount your old source disk and mount the new one. Copy the sources to the
RAM disk by typing:

cpdir –msv /usr/src /tmp/src

Whenever the steps tell you to issue the commandmake, you should type:

make –n >scr ipt

followed by the command:

sh –v script

Now the sources are being compiled. This can take asubstantial amount of time. It is

SEC. 8.2 REBUILDING MINIX ON THE ATARI ST 123

possible that during the compilation process your RAM disk runs out of space. This
is reported by the message:

No space left on device 1/0

If that happens, you should delete all source files with extension.c that are already
compiled. Do NOT remove files with a.h or .o extension or files that are not yet
compiled. Modifythe file script usingmined. Remove all lines preceding the line
on which your RAM disk ran out of space. Do not remove the line on which the
error occurred, since that file is not yet completely processed. After modifying the
file script, restart the compilation process by re-issuing the command:

sh –v script

Notice again that all sources which are compiled reside on the RAM disk in the
directory/tmp/src. Whenever issuing commands like make andrm, be sure that you
are indeed on the RAM disk, and that you are not accidently cluttering up your com-
piler disk or one of your source disks.

8.2.5. InstallingNew Device Drivers

Once you have successfully reached this point, you will now be able to modify
MINIX . In general, if a modification only affects, say, the file system, you will not
have to recompile the memory manager or kernel. If a modification affects any of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is conceivable that your modification has increased the size of some file so
much that the compiler complains about it.If this occurs, try to determine which
pass it is using the–v flag tocc, and then give that pass more memory usingchmem.

One common modification is adding new I/O devices and drivers. To add a new
I/O device to MINIX , it is necessary to write a driver for it. The new driver should
use the same message interface as the existing ones.The driver should be put in the
directorykernel andMakefile should be updated.In addition, the entry point of the
new task must be added to the list contained in the arraytaskin kernel/table.c.

Tw o changes are also required in the/usr/include/minixdirectory. In const.h, the
constantNR TASKShas to be increased by 1, and the new task has to be given a
name incom.h.

A new special file will have to be created for the driver. This can be done with
mknod.

To tell the file system which task is handling the new special file, a line has to be
added to the arraydmapin fs/table.c.

124 RECOMPILING MINIX CHAP. 8

8.2.6. RecompilingCommands and Libraries

The procedure for recompiling the commands and the library is similar to the
one for recompiling the kernel.

A major difference between recompiling commands and recompiling the kernel
is that each command (and each library module) can be recompiled independently of
all the others, so that less RAM disk is needed.

In order to runmake in the commands directory you should give make 35000
bytes of memory by issuing the command:

chmem =35000 /usr/bin/make

A few command source files are so big that the compiler complains about it.If
this occurs, try to determine which pass it is using the–v flag to cc, and then give
that pass more memory usingchmem.

Should the compiler run out of temporary space during a compilation you can
either use a larger RAM disk, or you can tell the compiler to put its temporary files
in another directory (on disk). Add–Tdir to the compile command if you want to
create the temporary files in directorydir.

8.3. REBUILDING MINIX ON THE COMMODORE AMIGA

To rebuild MINIX on the Amiga, you need at least 1M of memory. The procedure
is the same as for a 1M Atari, as described earlier in this chapter. The only differ-
ence is that instead of copying the minix.img file to /dev/fd0 you have to transfer
minix.imgto an AmigaDOS floppy, using transfer. The exact details are given in the
manual page oftransferin chapter 8.

8.4. REBUILDING MINIX ON THE MA CINT OSH

This section describes the procedure for building the boot application and the
kernel programs for the Macintosh version ofMINIX . Before continuing, see section
7.1 for a description of the source directories.

If you are working on a hard disk, be sure that all these directories have been set
up, and all files copied there from the distribution diskettes and decompressed and
dearchived.

If you do not have a hard disk, there are a couple of ways you can recompile the
system. First,if you have two diskette drives, use one drive to hold the root file sys-
tem, including the compiler, /usr/lib and/usr/include. Diskettes with programs to be
compiled are mounted on the other drive.

Second, if you have enough memory for a sufficiently large RAM disk, you can
put the root file system there, along with the compiler, /usr/lib and/usr/include.

SEC. 8.4 REBUILDING MINIX ON THE MA CINTOSH 125

If you a system with only one diskette drive, no hard disk, and insufficient mem-
ory for a large RAM disk, it is probably not possible to recompile the system.

As a test to see if everything is set up properly, type in, compile, and run the fol-
lowing program:

#include <limits.h>
main()
{

pr intf(′′PATH MAX = %d n′′, PATH MAX);
}

It should print out the value 255 forPA TH MAX.

8.4.1. Configuringthe System

The file /usr/include/minix/config.h contains some user-settable parameters.
Examine this file and make any changes that you require.For example, if
LINEWRAPis set to 0, then lines longer than 80 characters will be truncated; with
nonzero values they will be wrapped.If you want more information than is provided
in this file, examine the system sources themselves, for example, usinggrep to locate
the relevant files. In any event, be sureMACHINE is set toMACINTOSH.

8.4.2. Compilingthe Pieces

Once everything has been set up, actually compiling the pieces is easy. First go
to thekernel directory on you hard disk (or mount thekernel diskette and go to it).
Then type:

make –n

to see whatmake is planning to do.Normally it will list a sequence of compilations
to be done.If it complains that it cannot find some file, please install the file.

Now do it for real by typing:

make

The kernel will be compiled.
Now go to fs. If you are using diskettes, first unmount the one containing the

kernel sources and mount the one containing the file system sources.Now type

make –n

to see if everything is all right, followed by

make

to do the work. Ina similar way, go to mmand usemake to produce themmfile.

126 RECOMPILING MINIX CHAP. 8

Finally, go to toolsand type

make

to produceinit. Check to see that all of them have been made.If one is missing, use
make to produce it.

8.4.3. TheBoot Sequence

In this section we will describe how the four independently compiled and linked
programs,kernel, fs, mm, and init, are used in conjunction with the boot application
to bootMINIX on the Macintosh.

Basically, the boot application does the following:

1. It requests some memory from the the Macintosh operating system.
This memory will be used to load theMINIX kernel programs. Anything
remaining after these are loaded will be used by theMINIX kernel to run
MINIX programs.

2. Thekernel program is loaded first. The boot application reads this pro-
gram from theresource fork (Macintosh resources are explained below)
of the boot application, loads it into memory and relocates it so that the
addresses that the kernel use correspond correctly to the place where it
has been loaded in memory.

3. Similarly, mm is loaded, followed by fs and init. As each program is
loaded, the boot application reports where in memory it has been loaded
and how much memory has been consumed (text and data are shown
separately, and each is padded to a multiple of 256 bytes).

After having loaded the four files, the boot application jumps to the first instruc-
tion of the kernel, where execution proceeds normally. Since the kernel needs to
know where each program (mm, fs, and init) has been loaded, the boot application
passes this information on the stack.

8.4.4. TheBoot Application

The boot application is a relatively small program that is executed by the Macin-
tosh operating system.Every application that is executable by the Macintosh operat-
ing system is composed of a number ofresources. Each of these resources describes
some aspect of the application.For instance, CODE resources are compiled source
code, MENU resources describe menu bars, ICON resources describe the icon of the
program when it is displayed on the desktop, and so on. The Macintosh operating
system contains many system calls to support the use and manipulation of resources.
There are many, many different types of resources.The idea behind all of this was

SEC. 8.4 REBUILDING MINIX ON THE MA CINTOSH 127

that the executable code of the application could be divorced from the user interface
aspects, and the application could be easily customized for different countries and
languages.

The boot application, then, consists of three categories of resources: the code for
the boot application itself (CODE resources), a resource for each of the kernel pro-
grams (BOOT resources), and other peripheral resources.Included in this latter cat-
egory are things like the picture that is displayed when you select the "About
MINIX" menu item (the PICT resource). Note that the structure of resource files is
not even slightly related to the structure of a normalMINIX executable, and they can-
not be executed by theMINIX operating system.

8.4.5. Buildingand Testing a New Boot Application

Once you understand resources, the process of building the boot application
becomes rather straight forward. Firstthe boot code itself is compiled, then each of
the kernel programs are compiled, and then a utility program calledrmaker com-
poses the actual boot application from a textual description of the resources.
Rmaker is called a resource compiler; it is a very simple minded one and only knows
how to build a resource file from a limited number of resource types, but it should be
sufficient for most needs.

To build a new boot application, make a copy of the BOOT.00 diskette and set it
aside. Now boot make the new kernel programs if you have not already done so, go
to the tools directory and type:

make boot

This will compile the code of boot program (if necessary), and then it will run the
rmaker utility. The rmaker utility reads the resource descriptions fromboot.r and
builds the new boot application on the diskette (replacing the old one if necessary, so
only use a COPY of BOOT.00). Whenthe make is finished, kill any background
processes, do async, and reboot the system with the new diskette. Afterlogging in,
go to thetestdirectory and type:

run

to run all the test programs, assuming they hav ealready been compiled.If they hav e
not been, log in as root and type:

make all

If you do not have a hard disk, the above procedure has to be modified slightly.
You will have to copy the kernel, fs, and mmfiles to thetools directory and change
boot.r to reflect the change.

128 RECOMPILING MINIX CHAP. 8

8.4.6. InstallingNew Device Drivers

Follow the procedure outlined in the IBM PC section.

8.4.7. Troubleshooting

If you modify the system, there is always the possibility that you will introduce
an error. In this section, we will discuss some of the more common problems and
how to track them down.

To start with, if something is acting strange, turn the computer off, wait about
one minute, and reboot from scratch.This gets everything into a known state.
Rebooting with CTRL-ALT-DEL may leave the system in a peculiar state, which
may be the cause of the trouble.

If a message like

Booting MINIX 1.5

does not appear on the screen after the power-on self-tests have completed (on the
IBM PC), something is wrong with the boot block.The boot block prints this mes-
sage by calling the BIOS.Make a dump of the first block of the boot diskette and
examine it by hand to see if it contains the proper program.

If the above message appears, but the initial menu does not, it is likely thatmenu
is not being started, since the first thingmenudoes is print the menu.Check the last
6 bytes of the boot block to see if the segment and offset put there bybuild corre-
spond to the address at whichmenuis located (right afterinit).

If the menu appears, but the system does not respond to the equal sign,MINIX is
probably being started, but crashing during initialization.One possible cause is the
introduction of print statements into the kernel. However, it is not permitted to dis-
play anything until after the terminal task has run to initialize itself.Be careful
about where you put the print statements.

If the screen has been cleared and the message giving the sizes has appeared, the
kernel has initialized itself, the memory manager has run and blocked waiting for a
message, and the file system has started running.This message is printed as soon as
the file system has read the super-block of the root file system.

If the system appears to hang before or after reading the root file system, some
help can be obtained by hitting the F1 or F2 function keys (unless the dump routines
have been removed). By hitting F1 twice a few seconds apart and noting the times
in the display, it may be possible to see which processes are running.If, for exam-
ple, init is unable to fork, for whatever reason, or cannot open/etc/ttys, or cannot
execute/bin/shor /bin/login, the system will hang, but process 2 (init) may continue
to use CPU cycles. If the F1 display shows that process 2 is constantly running, it is
a good bet thatinit is unable to make a system call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message

SEC. 8.4 REBUILDING MINIX ON THE MA CINTOSH 129

and each outgoing reply. Recompile and test the system using the new output as a
guide.

8.5. REBUILDING MINIX ON THE SUN SP ARCSTATION 1

It is possible to rebuild MINIX-SPARC on any SparcStation with at least 4 MB of
main memory and a hard disk. Some hints are given to rebuild MINIX-SPARC on a
SparcStation with only a diskette drive and at least 8 MB of RAM.

8.5.1. Configuringthe System

In order to rebuild MINIX-SPARC you must first prepare your system.What you
must do depends on your system.If you have a hard disk, you should install all the
sources and binaries on your disk.

If you want to reconfigure the system you should first examine the files
include/minix/config.h andinclude/minix/boot.h. These contain a number of tunable
system parameters.For instance if you keep your root partition on/dev/sd15, but
you do not want to load this partition into the RAM disk upon startup, you could
change the line

#define DROOTDEV (DEV RAM + 0)

in include/minix/boot.hinto

#define DROOTDEV (DEV HD0 + 15)

If you do not want to copy the root partition, but you want to keep a RAM disk, you
should modify the value of the constantDRAMSIZEin include/minix/boot.has well.

The file config.h contains some user-settable parameters. Examine this file and
make the changes you require. The macroMACHINE should beSUN 4 on the
SparcStation. You should change the value of NR BUFS to a bigger value, like
1536, but only if your SparcStation has at least 8 MB of main memory. The file sys-
tem process gets only a maximum of 1792 KB of memory, in which the FS code,
data and stack should fit. So do not make the FS buffer cache too big or else the sys-
tem will crash.

8.5.2. Rebuilding MINIX Using a Hard Disk

Rebuilding MINIX is fairly simple when you have a hard disk. Assuming that
you have installed the sources in/usr/src, and that there is enough free space on your
hard disk to accommodate all object files and results, type:

cd /usr/src/ker nel
make

130 RECOMPILING MINIX CHAP. 8

cd /usr/src/mm
make
cd /usr/src/fs
make
cd /usr/src/tools
make

If disk space is tight you can remove all .o files after each make. If ev erything suc-
ceeds, you will have a file calledminix.img in /usr/src/tools. You can create a new
boot diskette by inserting an empty, formatted disk into the disk drive and issuing
the command:

cp /usr/src/tools/minix.img /dev/rfd0

If the diskette was not yet formatted, you have to fdformat it first. If you want to
bootMINIX from hard disk, you should copy theMINIX-SPARC boot image to a pre-
viously prepared hard disk partition.To copy the image, construct a shell sript con-
taining the following line:

dd if=/usr/src/tools/minix.img of=/dev/sdn skip=1 seek=1 conv=sync

wheren is the ASCII representation of the minor partition number. It is wise to
triple check this command when you have typed it, as it writes on the given hard
disk partition without checking whether there was already aMINIX or SunOS
filesystem on it. The point of putting it in a shell script is that you can examine it
carefully after typing it.If you just type it in and make a mistake, you can wipe out
your hard disk.After you are convinced that it is correct, execute the shell script.

Now you can logout and reboot the system to try your new boot disk. It is
advised to generate a new file /etc/psdatabase, which is used by thepsprogram. The
command:

ps –U

will make this file for you. Do not forget to copy /etc/psdatabaseto your root disk.

8.5.3. Rebuilding MINIX Using a Floppy Diskette Drive

It is possible to rebuild MINIX-SPARC on a SparcStation with at least 8 MB of
main memory but without a hard disk. This section gives hints on how to create an
environment to rebuild MINIX without using a hard disk, but is not quite exhaustive
in explaining everything step-by-step. When you want to rebuild MINIX with only a
diskette, you have to be creative.

To create the environment, you should format four 1.44M diskettes. The first
diskette will be used for a big 4MB root filesystem, which should contain the normal
root filesystem files plus the C compiler, editor, include files, etc. The second will be

SEC. 8.5 REBUILDING MINIX ON THE SUN SPARCSTATION 1 131

used for the kernel, the third for the memory manager, the file system and tools
sources. The last diskette will be the new boot diskette. You should create a ROOT
file system of 4 MB. A 3MB filesystem should do as well but that is the minimum.
This is how you should create the ROOT file system. First rebootMINIX . Then log
in asroot and type:

for i in ar cpdir df rmdir mkfs fdfor mat chmod compress
do cp /usr/bin/$i /bin; done
/etc/umount /dev/fd0

Next, insert a new diskette, format it, create aMINIX file system on it and copy the
ROOT file system to it:

fdfor mat
mkfs –t /dev/fd0 4096
/etc/mount /dev/fd0 /user
cpdir –msv / /user
/etc/umount /dev/fd0

RebootMINIX again with the new ROOT diskette. To compile programs, you will
needcc, as, ld, /usr/include, cpp, cc1and libc.a. You’ll probably also want a pro-
gram editor andmake.

/etc/umount /dev/fd0 # unmount the /usr/disk
/etc/mount /dev/fd0 /user # inser t 04.USR2
cp /user/bin/elvis /bin/vi # copy elvis (or mined)
cp /user/bin/make /bin
/etc/umount /dev/fd0
/etc/mount /dev/fd0 /user # inser t 05.CSYS
cp /user/bin/* /bin # get cc, as and ld
cd /bin; compress –d *.Z; rm *.Z
mkdir /usr/lib; cd /usr/lib # create the lib directory
cp /user/lib/[cehl]* .
compress –d *.Z; rm *.Z
cpdir /user/include /usr/include; cd /usr/include
compress –d *.Z; rm *.Z; ar x *.a; rm *.a
(cd minix; compress –d *.Z; rm *.Z; ar x *.a; rm *.a)
(cd sys; compress –d *.Z; rm *.Z; ar x *.a; rm *.a)
mkdir /usr/tmp # vi and the C compiler want /usr/tmp
mkdir /usr/src

You could copy your current ram device to the root diskette, but you should make
sure, that it fits (i.e., no more than 1440 used blocks on/dev/ram; check this withdf).

Now, you need to copy and unpack the kernel sources:

/etc/umount /dev/fd0 # unmount 05.CSYS

132 RECOMPILING MINIX CHAP. 8

/etc/mount /dev/fd0 /user # inser t 07.SRC2
cp /user/src/ker nel/* /tmp # temporar ily store ker nel sources in tmp
/etc/umount /dev/fd0 # unmount diskette and insert empty diskette
fdfor mat # for mat the diskette
mkfs /dev/fd0 1440 # create an empty filesystem
/etc/mount /dev/fd0 /usr/src
mkdir /usr/src/ker nel # create ker nel director y on the diskette
cp /tmp/* /usr/src/ker nel # copy the ker nel files to it
cd /usr/src/ker nel; compress –d *.Z; rm *.Z; ar x *.a; rm *.a
cd /; /etc/umount /dev/fd0 # remove the diskette
rm /tmp/* # and the temporar y files

The same needs to be done for the MM/FS/tools diskette:

/etc/mount /dev/fd0 /user # inser t 07.SRC2
for i in mm fs tools; do cpdir –mv /user/src/$i /tmp/$i; done
/etc/umount /dev/fd0 # unmount 07.SRC2 and insert empty diskette
fdfor mat # for mat the diskette
mkfs /dev/fd0 1440 # create an empty filesystem
/etc/mount /dev/fd0 /usr/src
for i in mm fs tools
do cpdir –mv /tmp/$i /usr/src/$i; cd /usr/src/$i
compress –d *.Z; rm *.Z; ar x *.a; rm *.a; rm –rf /tmp/$i
done
mkdir /usr/src/ker nel
/etc/umount /dev/fd0 # remove the diskette

Now, you can rebuild theMINIX-SPARC kernel in three phases. First recompile the
kernel, then recompile MM and FS and merge them producing a new bootable
MINIX image and finally copy this image to a diskette. To start, insert thekernel
diskette, you just created:

/etc/mount /dev/fd0 /usr/src # mount the ker nel diskette
cd /usr/src/ker nel; make
cp /usr/src/ker nel/ker nel.out /tmp

The last command copies the linked kernel image to the RAM device. Now unmount
thekernel diskette, replace it with the diskette, containing themm, fs andtools, and
mount it. Compile the sources:

/etc/umount /dev/fd0 # unmount the ker nel diskette
/etc/mount /dev/fd0 /usr/src # mount the mm/fs/tools diskette
cd /usr/src/mm; make # make mm.out
cd /usr/src/fs; make # make fs.out
cp /tmp/ker nel.out /usr/src/ker nel
cd /usr/src/tools

SEC. 8.5 REBUILDING MINIX ON THE SUN SPARCSTATION 1 133

make # make minix.img
cp minix.img /tmp
cd /tmp
/etc/umount /dev/fd0

Remove the diskette and insert an empty, formatted diskette. Copy theMINIX image
to it:

cp minix.img /dev/rfd0

If space is getting scarce, remove as much temporary and ‘.o’ fi les as necessary.

8.5.4. InstallingNew Device Drivers

Once you have successfully reached this point, you will now be able to modify
MINIX . In general, if a modification only affects, say, the file system, you will not
have to recompile the memory manager or kernel. If a modification affects any of
the files in/usr/includeyou should recompile the entire system, just to be safe.

It is conceivable that your modification has increased the size of some file so
much that the compiler complains about it.If this occurs, try to determine which
pass it is using the–v flag tocc, and then give that pass more memory usingchmem.

One common modification is adding new I/O devices and drivers. To add a new
I/O device toMINIX , it is necessary to write a driver for it. The new driver should
use the same message interface as the existing ones.The driver should be put in the
directorykernel andMakefile should be updated. In addition, the entry point of the
new task must be added to the list contained in the arraytask[] in kernel/table.c.

Tw o changes are also required in the/usr/include/minixdirectory. In const.h, the
constantNR TASKShas to be increased by 1, and the new task has to be given a
name incom.h.

A new special file will have to be created for the driver. This can be done with
mknod.

To tell the file system which task is handling the new special file, a line has to be
added to the arraydmap[] in fs/table.c.

Writing device drivers forMINIX-SPARC is somewhat more difficult than writing
device drivers for the PC or Atari versions ofMINIX . The first problem is that the
internal hardware of the SparcStation is not well documented.Secondly, the Sparc-
Station 1, 1+ and IPC use an MMU with contexts and a cache.A context is a trans-
lation table of virtual to physical addresses. Of the 8 available contexts, MINIX-
SPARC uses only the first 3 contexts. TheMINIX memory manager runs at virtual
address 0 in context 0, the file system at virtual address 0 in context 1 and the cur-
rently (or last) running user process is mapped at virtual address 0 in context 2. The
kernel is mapped inall contexts in high virtual memory at address 0xE0004000.
When a device driver wants to access data in the memory of another process, it has
to map that memory in its own address space. But by double mapping of the same

134 RECOMPILING MINIX CHAP. 8

physical memory, the cache of the SparcStation could present problems.Therefore,
a device driver should carefully flush the cache. If you want to write a device driver,
study the present device drivers closely, until you understand them.The file
/usr/src/kernel/const.hgives information on the Sparc and SparcStation specific con-
stants.

8.5.5. RecompilingCommands and Libraries

The procedure for recompiling the commands and the library is similar to the
one for recompiling the kernel.

A major difference between recompiling commands and recompiling the kernel
is that each command (and each library module) can be recompiled independently of
all the others, so that less RAM disk is needed.

In order to runmake in the commands directory you should give make 60000
bytes of memory by issuing the command:

chmem =60000 /usr/bin/make

A few command source files are so big that the compiler complains about it.If
this occurs, try to determine which pass it is using the–v flag to cc, and then give
that pass more memory usingchmem. Especially the GNU C-compiler proper
(/usr/lib/cc1) is known to require a gap of 1200000 bytes to compile some programs.
When compiling the libraries via

cc –O –D MINIX –D POSIX SOURCE –c *.c

the dispatcher, cc, will need more memory.

8.5.6. RecompilingGNU Sources

Rebuilding the GNU programs is somewhat different from rebuilding the ordi-
naryMINIX commands. This is mainly due to the size and the form of distribution of
the GNU sources.

Some gcc and gas source files are so big, that/usr/lib/cc1and /usr/bin/asneed
more memory space to compile/assemble them. When compiling gcc or gas, it’s best
to temporarily increase the gap size of/usr/lib/cc1 to 1600000, and the gap size of
/usr/bin/asto 800000. This will be enough to compile the most demanding sources.
To link the assembler object files,/usr/bin/ld needs a slightly bigger gap of 150000
bytes. You should restore the gaps to their original sizes after you’ve finished recom-
piling gcc and gas to preserve memory space.

Distributed are original GNU source files, stored in theSetup.dirdirectories, and
the changes made to some source files incdiff files in theSetup.fixdirectories. There
are three GNU source directories,gcc, gasandbinutils in the /usr/src/gnudirectory.

To compile, for instance,gcc, you should have installed the GNU sources via
/usr/setup usr. You also should have bootedMINIX-SPARC with a root file system,

SEC. 8.5 REBUILDING MINIX ON THE SUN SPARCSTATION 1 135

big enough to hold the temporary files frompatch. The distribution 02.ROOT is not
big enough. Use a root of at least 768 KB, created as shown in Step 4 of section
6.3.4. Log in and type:

chmem =1600000 /usr/lib/cc1
chmem =800000 /usr/bin/as
cd /usr/src/gnu/gcc
make

Now, theMINIX-SPARC sources of the GNU C compiler are extracted and compiled,
which may take a while, even on a fast computer like the SparcStation. The new cc,
cpp and cc1 can be tested and copied to/usr/bin and /usr/lib if they’re all right.
Afterwards, you shouldchmem cc1andas to their original gap sizes. If you do not,
both of them will allocate an enormous amount of memory when run, which is
almost never used.

